Java中HashMap详解:hash原理、扩容机制、线程不安全及源码分析

前言

       HashMap 是 Java 中常用的数据结构之一,用于存储键值对。在 HashMap 中,每个键都映射到一个唯一的值,可以通过键来快速访问对应的值,算法时间复杂度可以达到 O(1)。

        HashMap 的实现原理是基于哈希表的,它的底层是一个数组,数组的每个位置可能是一个链表或红黑树,也可能只是一个键值对。当添加一个键值对时,HashMap 会根据键的哈希值计算出该键对应的数组下标(索引),然后将键值对插入到对应的位置。

        当通过键查找值时,HashMap 也会根据键的哈希值计算出数组下标,并查找对应的值。

       在实际应用中,HashMap 可以用于缓存、索引等场景。例如,可以将用户 ID 作为键,用户信息作为值,将用户信息缓存到 HashMap 中,以便快速查找。又如,可以将关键字作为键,文档 ID 列表作为值,将文档索引缓存到 HashMap 中,以便快速搜索文档。

hash原理

        来看一下 hash 方法的源码(JDK 8 中的 HashMap):

static final int hash(Object key) {
    int h;
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

        将 key 的 hashCode 值进行处理,得到最终的哈希值

怎么理解这句话呢?

        我们来 new 一个 HashMap,并通过 put 方法添加一个元素。

HashMap<String, String> map = new HashMap<>();
map.put("chenmo", "沉默");

        来看一下 put 方法的源码

public V put(K key, V value) {
    return putVal(hash(key), key, value, false, true);
}

hash 方法的作用

        hashMap 的底层是通过数组的形式实现的,初始大小是 16,HashMap 在添加第一个元素的时候,需要通过键的哈希码在大小为 16 的数组中确定一个位置(索引)

        16 个方格子(可以把它想象成一个一个桶),每个格子都有一个编号,对应大小为 16 的数组下标(索引)

        现在,我们要把 key 为 “chenmo”,value 为“沉默”的键值对放到这 16 个格子中的一个。

怎么确定位置(索引)呢?

        通过与运算 (n - 1) & hash(实际就是对数组长度求余),其中变量 n 为数组的长度,变量 hash 就是通过 hash() 方法计算后的结果

        chenmo”这个 key 计算后的位置(索引)是8,也就是说 map.put("chenmo", "沉默") 会把 key 为 “chenmo”,value 为“沉默”的键值对放到下标为 8 的位置上(也就是索引为 8 的桶上)

 回到 hash 方法:

static final int hash(Object key) {
    int h;
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

下面是对该方法的一些解释:

  • 参数 key:需要计算哈希码的键值。
  • key == null ? 0 : (h = key.hashCode()) ^ (h >>> 16):这是一个三目运算符,如果键值为 null,则哈希码为 0(依旧是说如果键为 null,则存放在第一个位置);否则,通过调用hashCode()方法获取键的哈希码,并将其与右移 16 位的哈希码进行异或运算。
  • ^ 运算符:异或运算符是 Java 中的一种位运算符,它用于将两个数的二进制位进行比较,如果相同则为 0,不同则为 1。
  • h >>> 16:将哈希码向右移动 16 位,相当于将原来的哈希码分成了两个 16 位的部分。
  • 最终返回的是经过异或运算后得到的哈希码值

        理论上,哈希值(哈希码)是一个 int 类型,范围从-2147483648 到 2147483648,但问题是一个 40 亿长度的数组,内存是放不下的。HashMap 扩容之前的数组初始大小只有 16,所以这个哈希值是不能直接拿来用的,用之前要和数组的长度做与运算(前文提到的 (n - 1) & hash取余运算),用得到的值来访问数组下标才行。(当数组的长度是 2 的 n 次方,或者 n 次幂,或者 n 的整数倍时,取模运算/取余运算可以用位运算来代替,效率更高

小结

        hash 方法的主要作用是将 key 的 hashCode 值进行处理,得到最终的哈希值。由于 key 的 hashCode 值是不确定的,可能会出现哈希冲突,因此需要将哈希值通过一定的算法映射到 HashMap 的实际存储位置上。

        hash 方法的原理是,先获取 key 对象的 hashCode 值,然后将其高位与低位进行异或操作,得到一个新的哈希值。为什么要进行异或操作呢?因为对于 hashCode 的高位和低位,它们的分布是比较均匀的,如果只是简单地将它们加起来或者进行位运算,容易出现哈希冲突,而异或操作可以避免这个问题。

        然后将新的哈希值取模(mod),得到一个实际的存储位置。这个取模操作的目的是将哈希值映射到桶(Bucket)的索引上,桶是 HashMap 中的一个数组,每个桶中会存储着一个链表(或者红黑树),装载哈希值相同的键值对(没有相同哈希值的话就只存储一个键值对)。

        总的来说,HashMap 的 hash 方法就是将 key 对象的 hashCode 值进行处理,得到最终的哈希值,并通过一定的算法映射到实际的存储位置上。这个过程决定了 HashMap 内部键值对的查找效率。

扩容机制

        HashMap 的底层用的是数组。向 HashMap 里不停地添加元素,当数组无法装载更多元素时,就需要对数组进行扩容,以便装入更多的元素;除此之外,容量的提升也会相应地提高查询效率,因为“桶(坑)”更多了嘛,原来需要通过链表存储的(查询的时候需要遍历),扩容后可能就有自己专属的“坑位”了(直接就能查出来)。

        数组是无法自动扩容的,所以如果要扩容的话,就需要新建一个大的数组,然后把之前小的数组的元素复制过去,并且要重新计算哈希值和重新分配桶(重新散列),这个过程也是挺耗时的。

        HashMap 的扩容是通过 resize 方法来实现的,JDK 8 中融入了红黑树(链表长度超过 8 的时候,会将链表转化为红黑树来提高查询效率),以下是jdk7的方法

// newCapacity为新的容量
void resize(int newCapacity) {
    // 小数组,临时过度下
    Entry[] oldTable = table;
    // 扩容前的容量
    int oldCapacity = oldTable.length;
    // MAXIMUM_CAPACITY 为最大容量,2 的 30 次方 = 1<<30
    if (oldCapacity == MAXIMUM_CAPACITY) {
        // 容量调整为 Integer 的最大值 0x7fffffff(十六进制)=2 的 31 次方-1
        threshold = Integer.MAX_VALUE;
        return;
    }

    // 初始化一个新的数组(大容量)
    Entry[] newTable = new Entry[newCapacity];
    // 把小数组的元素转移到大数组中
    transfer(newTable, initHashSeedAsNeeded(newCapacity));
    // 引用新的大数组
    table = newTable;
    // 重新计算阈值
    threshold = (int)Math.min(newCapacity * loadFactor, MAXIMUM_CAPACITY + 1);
}

        该方法接收一个新的容量 newCapacity,然后将 HashMap 的容量扩大到 newCapacity。

        首先,方法获取当前 HashMap 的旧数组 oldTable旧容量 oldCapacity。如果旧容量已经达到 HashMap 支持的最大容量 MAXIMUM_CAPACITY( 2 的 30 次方),就将新的阈值threshold 调整为 Integer.MAX_VALUE(2 的 31 次方 - 1),这是因为 HashMap 的容量不能超过 MAXIMUM_CAPACITY。

        接着,方法创建一个新的数组 newTable,并将旧数组 oldTable 中的元素转移到新数组 newTable 中。转移过程是通过调用 transfer 方法来实现的。该方法遍历旧数组中的每个桶,并将每个桶中的键值对重新计算哈希值后,将其插入到新数组对应的桶中。

        转移完成后,方法将 HashMap 内部的数组引用 table 指向新数组 newTable,并重新计算阈值 threshold。新的阈值是新容量 newCapacity 乘以负载因子 loadFactor 的结果,但如果计算结果超过了 HashMap 支持的最大容量 MAXIMUM_CAPACITY,则将阈值设置为 MAXIMUM_CAPACITY + 1,这是因为 HashMap 的元素数量不能超过 MAXIMUM_CAPACITY。

那 newCapacity 是如何计算的呢?

int newCapacity = oldCapacity << 1;
if (newCapacity >= DEFAULT_INITIAL_CAPACITY && oldCapacity >= DEFAULT_INITIAL_CAPACITY) {
    if (newCapacity > MAXIMUM_CAPACITY)
        newCapacity = MAXIMUM_CAPACITY;
} else {
    if (newCapacity < DEFAULT_INITIAL_CAPACITY)
        newCapacity = DEFAULT_INITIAL_CAPACITY;
}

                新容量 newCapacity 被初始化为原容量 oldCapacity 的两倍。然后,如果 newCapacity 超过了 HashMap 的容量限制 MAXIMUM_CAPACITY(2^30),就将 newCapacity 设置为 MAXIMUM_CAPACITY。如果 newCapacity 小于默认初始容量 DEFAULT_INITIAL_CAPACITY(16),就将 newCapacity 设置为 DEFAULT_INITIAL_CAPACITY。这样可以避免新容量太小或太大导致哈希冲突过多或者浪费空间。

transfer 方法

        该方法用来转移,将旧的小数组元素拷贝到新的大数组中。

void transfer(Entry[] newTable, boolean rehash) {
    // 新的容量
    int newCapacity = newTable.length;
    // 遍历小数组
    for (Entry<K,V> e : table) {
        while(null != e) {
            // 拉链法,相同 key 上的不同值
            Entry<K,V> next = e.next;
            // 是否需要重新计算 hash
            if (rehash) {
                e.hash = null == e.key ? 0 : hash(e.key);
            }
            // 根据大数组的容量,和键的 hash 计算元素在数组中的下标
            int i = indexFor(e.hash, newCapacity);

            // 同一位置上的新元素被放在链表的头部
            e.next = newTable[i];

            // 放在新的数组上
            newTable[i] = e;

            // 链表上的下一个元素
            e = next;
        }
    }
}

        该方法接受一个新的 Entry 数组 newTable 和一个布尔值 rehash 作为参数,其中 newTable 表示新的哈希表rehash 表示是否需要重新计算键的哈希值

        在方法中,首先获取新哈希表(数组)的长度 newCapacity,然后遍历旧哈希表中的每个 Entry。对于每个 Entry,使用拉链法将相同 key 值的不同 value 值存储在同一个链表中。如果 rehash 为 true,则需要重新计算键的哈希值,并将新的哈希值存储在 Entry 的 hash 属性中。

        接着,根据新哈希表的长度和键的哈希值,计算 Entry 在新数组中的位置 i,然后将该 Entry 添加到新数组的 i 位置上。由于新元素需要被放在链表的头部,因此将新元素的下一个元素设置为当前数组位置上的元素。

        最后,遍历完旧哈希表中的所有元素后,转移工作完成,新的哈希表 newTable 已经包含了旧哈希表中的所有元素。

 JDK 8 的扩容源代码:

final Node<K,V>[] resize() {
    Node<K,V>[] oldTab = table; // 获取原来的数组 table
    int oldCap = (oldTab == null) ? 0 : oldTab.length; // 获取数组长度 oldCap
    int oldThr = threshold; // 获取阈值 oldThr
    int newCap, newThr = 0;
    if (oldCap > 0) { // 如果原来的数组 table 不为空
        if (oldCap >= MAXIMUM_CAPACITY) { // 超过最大值就不再扩充了,就只好随你碰撞去吧
            threshold = Integer.MAX_VALUE;
            return oldTab;
        }
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && // 没超过最大值,就扩充为原来的2倍
                 oldCap >= DEFAULT_INITIAL_CAPACITY)
            newThr = oldThr << 1; // double threshold
    }
    else if (oldThr > 0) // initial capacity was placed in threshold
        newCap = oldThr;
    else { // zero initial threshold signifies using defaults
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
    // 计算新的 resize 上限
    if (newThr == 0) {
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    }
    threshold = newThr; // 将新阈值赋值给成员变量 threshold
    @SuppressWarnings({"rawtypes","unchecked"})
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap]; // 创建新数组 newTab
    table = newTab; // 将新数组 newTab 赋值给成员变量 table
    if (oldTab != null) { // 如果旧数组 oldTab 不为空
        for (int j = 0; j < oldCap; ++j) { // 遍历旧数组的每个元素
            Node<K,V> e;
            if ((e = oldTab[j]) != null) { // 如果该元素不为空
                oldTab[j] = null; // 将旧数组中该位置的元素置为 null,以便垃圾回收
                if (e.next == null) // 如果该元素没有冲突
                    newTab[e.hash & (newCap - 1)] = e; // 直接将该元素放入新数组
                else if (e instanceof TreeNode) // 如果该元素是树节点
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap); // 将该树节点分裂成两个链表
                else { // 如果该元素是链表
                    Node<K,V> loHead = null, loTail = null; // 低位链表的头结点和尾结点
                    Node<K,V> hiHead = null, hiTail = null; // 高位链表的头结点和尾结点
                    Node<K,V> next;
                    do { // 遍历该链表
                        next = e.next;
                        if ((e.hash & oldCap) == 0) { // 如果该元素在低位链表中
                            if (loTail == null) // 如果低位链表还没有结点
                                loHead = e; // 将该元素作为低位链表的头结点
                            else
                                loTail.next = e; // 如果低位链表已经有结点,将该元素加入低位链表的尾部
                            loTail = e; // 更新低位链表的尾结点
                        }
                        else { // 如果该元素在高位链表中
                            if (hiTail == null) // 如果高位链表还没有结点
                                hiHead = e; // 将该元素作为高位链表的头结点
                            else
                                hiTail.next = e; // 如果高位链表已经有结点,将该元素加入高位链表的尾部
                            hiTail = e; // 更新高位链表的尾结点
                        }
                    } while ((e = next) != null); //
                    if (loTail != null) { // 如果低位链表不为空
                        loTail.next = null; // 将低位链表的尾结点指向 null,以便垃圾回收
                        newTab[j] = loHead; // 将低位链表作为新数组对应位置的元素
                    }
                    if (hiTail != null) { // 如果高位链表不为空
                        hiTail.next = null; // 将高位链表的尾结点指向 null,以便垃圾回收
                        newTab[j + oldCap] = hiHead; // 将高位链表作为新数组对应位置的元素
                    }
                }
            }
        }
    }
    return newTab; // 返回新数组
}
  1. 获取原来的数组 table、数组长度 oldCap 和阈值 oldThr。
  2. 如果原来的数组 table 不为空,则根据扩容规则计算新数组长度 newCap 和新阈值 newThr,然后将原数组中的元素复制到新数组中。
  3. 如果原来的数组 table 为空但阈值 oldThr 不为零,则说明是通过带参数构造方法创建的 HashMap,此时将阈值作为新数组长度 newCap。
  4. 如果原来的数组 table 和阈值 oldThr 都为零,则说明是通过无参数构造方法创建的 HashMap,此时将默认初始容量 DEFAULT_INITIAL_CAPACITY(16)和默认负载因子 DEFAULT_LOAD_FACTOR(0.75)计算出新数组长度 newCap 和新阈值 newThr。
  5. 计算新阈值 threshold,并将其赋值给成员变量 threshold。
  6. 创建新数组 newTab,并将其赋值给成员变量 table。
  7. 如果旧数组 oldTab 不为空,则遍历旧数组的每个元素,将其复制到新数组中。
  8. 返回新数组 newTab。

        在 JDK 8 的新 hash 算法下,数组扩容后的索引位置,要么就是原来的索引位置,要么就是“原索引+原来的容量”,遵循一定的规律

小结 

        当我们往 HashMap 中不断添加元素时,HashMap 会自动进行扩容操作(条件是元素数量达到负载因子(load factor)乘以数组长度时),以保证其存储的元素数量不会超出其容量限制。

        在进行扩容操作时,HashMap 会先将数组的长度扩大一倍,然后将原来的元素重新散列到新的数组中。

        由于元素的位置是通过 key 的 hash 和数组长度进行与运算得到的,因此在数组长度扩大后,元素的位置也会发生一些改变。一部分索引不变,另一部分索引为“原索引+旧容量”。

线程不安全

多线程下 put 会导致元素丢失

        多线程同时执行 put 操作时,如果计算出来的索引位置是相同的,那会造成前一个 key 被后一个 key 覆盖,从而导致元素的丢失。

put 和 get 并发时会导致 get 到 null

        线程 1 执行 put 时,因为元素个数超出阈值而导致出现扩容,线程 2 此时执行 get,就有可能出现这个问题。

        因为线程 1 执行完 table = newTab 之后,线程 2 中的 table 此时也发生了变化,此时去 get 的时候当然会 get 到 null 了,因为元素还没有转移。

小结

        HashMap 是线程不安全的主要是因为它在进行插入、删除和扩容等操作时可能会导致链表的结构发生变化,从而破坏了 HashMap 的不变性。具体来说,如果在一个线程正在遍历 HashMap 的链表时,另外一个线程对该链表进行了修改(比如添加了一个节点),那么就会导致链表的结构发生变化,从而破坏了当前线程正在进行的遍历操作,可能导致遍历失败或者出现死循环等问题。

        为了解决这个问题,Java 提供了线程安全的 HashMap 实现类ConcurrentHashMap 。ConcurrentHashMap 内部采用了分段锁(Segment),将整个 Map 拆分为多个小的 HashMap,每个小的 HashMap 都有自己的锁,不同的线程可以同时访问不同的小 Map,从而实现了线程安全。在进行插入、删除和扩容等操作时,只需要锁住当前小 Map,不会对整个 Map 进行锁定,提高了并发访问的效率

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/792356.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

禁用华为小米?微软中国免费送iPhone15

微软中国将禁用华为和小米手机&#xff0c;要求员工必须使用iPhone。如果还没有iPhone&#xff0c;公司直接免费送你全新的iPhone 15&#xff01; 、 这几天在微软热度最高的话题就是这个免费发iPhone&#xff0c;很多员工&#xff0c;收到公司的通知。因为&#xff0c;登录公司…

ITSS服务经理职责与认可情况分析

随着信息技术的高速发展和广泛应用&#xff0c;企业对信息技术管理和应用的需求日益凸显。 为满足这一迫切需求&#xff0c;对具备专业知识和技能的人才的需求也日益增长&#xff0c;他们负责管理和实施相关项目。 因此&#xff0c;ITSS服务项目经理证书应运而生&#xff0c;这…

提升Selenium在Chrome上的HTML5视频捕获效果的五个方法

在使用Selenium进行网页自动化测试时&#xff0c;捕获HTML5视频是一个常见的需求。然而&#xff0c;许多开发者发现&#xff0c;在使用Chrome浏览器时&#xff0c;视频捕获效果并不理想&#xff0c;经常出现视频背景为空白的问题。本文将概述五种方法&#xff0c;帮助提升Selen…

基于语义的法律问答系统

第一步&#xff0c;准备数据集 第二步&#xff0c;构建索引数据集&#xff0c;问答对数据集&#xff0c;训练数据集&#xff0c;召回评估数据集 第三步&#xff0c;构建dataloader,选择优化器训练模型&#xff0c;之后召回评估 第四步&#xff0c;模型动转静&#xff0c;之后…

eplan软件许可优化解决方案

Eplan软件介绍 Eplan是一款专业的电气设计软件&#xff0c;用于自动化工程和电气系统的设计与文档化。它由德国的Eplan Software & Service GmbH开发&#xff0c;并在全球范围内广泛应用于工程设计和电气工程领域。 Eplan软件提供了全面的工具和功能&#xff0c;以简化和优…

Vue3 引入腾讯地图 包含标注简易操作

1. 引入腾讯地图API JavaScript API | 腾讯位置服务 (qq.com) 首先在官网注册账号 并正确获取并配置key后 找到合适的引入方式 本文不涉及版本操作和附加库 据体引入参数参考如下图 具体以链接中官方参数为准标题 在项目根目录 index.html 中 写入如下代码 <!-- 引入腾…

微软的人工智能语音生成器在测试中达到与人类同等水平

微软公司开发了一种新的神经编解码语言模型 Vall-E&#xff0c;在自然度、语音鲁棒性和说话者相似性方面都超越了以前的成果。它是同类产品中第一个在两个流行基准测试中达到人类同等水平的产品&#xff0c;而且显然非常逼真&#xff0c;以至于微软不打算向公众开放。 VALL-E …

车载测试资料学习和CANoe工具实操车载项目(每日直播)

每日直播时间&#xff1a;&#xff08;直播方式&#xff1a;腾讯会议&#xff09; 周一到周五&#xff1a;20&#xff1a;00-23&#xff1a;00 周六与周日&#xff1a;9&#xff1a;00-17&#xff1a;00 向进腾讯会议学习的&#xff0c;可以关注我并后台留言 直播内容&#xff…

GPMC并口多通道AD采集案例,基于TI AM62x四核处理器平台!

GPMC并口简介 GPMC(General Purpose Memory Controller)是TI处理器特有的通用存储器控制器接口&#xff0c;是AM62x、AM64x、AM437x、AM335x、AM57x等处理器专用于与外部存储器设备的接口&#xff0c;如&#xff1a; (1)FPGA器件 (2)ADC器件 (3)SRAM内存 (4)NOR/NAND闪存 …

electron实现右键菜单保存图片功能

1.创建窗口&#xff0c;加载页面&#xff0c;代码如下&#xff1a; //打开窗口const {ipcMain, BrowserWindow} require("electron") const saveImage require("../ipcMain/saveImage") let win null; ipcMain.handle(on-open-event, (event, args) &g…

Airtest成功案例分享:KLab连续2年携Airtest私有云产品参加CEDEC大会!

一、KLab株式会社介绍 KLab株式会社是一家位于日本的移动游戏开发公司&#xff0c;成立于2000年。公司以开发和运营基于动漫和漫画IP的手机游戏而闻名&#xff0c;尤其是在音乐节奏游戏领域。KLab的一些知名作品包括《LoveLive!学园偶像祭》、《排球少年&#xff1a;新的征程》…

【unity笔记】常见问题收集

一 . Unity Build GI data 卡住问题 问题解决: 参考官方文档&#xff0c;GI(Global Illumination) data 指的是全局照明信息。 在Unity的Edit->Preference中&#xff0c;可以编辑GI缓存路径和分配GI缓存大小。 调出Window->Rendering->Lighting窗口&#xff0c;取消…

阿里云调整全球布局关停澳洲云服务器,澳洲服务器市场如何选择稳定可靠的云服务?

近日&#xff0c;阿里云宣布将关停澳大利亚地域的数据中心服务&#xff0c;这一决定引发了全球云计算行业的广泛关注。作为阿里云的重要海外市场之一&#xff0c;澳洲的数据中心下架对于当地的企业和个人用户来说无疑是一个不小的挑战。那么&#xff0c;在阿里云调整全球布局的…

vue vite+three在线编辑模型导入导出

文章目录 序一、1.0.0版本1.新增2.编辑3.导出4.导入 二、2.0.0版本1. 修复模型垂直方向放置时 模型会重合4. 修复了导出导入功能 现在是1:1导出导入5. 新增一个地面 视角看不到地下 设置了禁止编辑地面 地面设置为圆形6. 新增功能 可选择基本圆形 方形 圆柱形等模型以及可放置自…

判断非radio\checkbox 勾选框是否被勾选

1、通常如果是标准的勾选框我们可以使用使用isSelected()方法无法判断其勾选状态&#xff0c;如下代码&#xff1a; Boolean bldriver.findElement(By.xpath("//*[contains(class,el-icon-success)]")).isSelected(); 2、如图所示&#xff0c;该勾选框并不是一个…

51单片机STC89C52RC——16.1 五线四相步进电机

目录 目的/效果 一&#xff0c;STC单片机模块 二&#xff0c;步进电机 2.2 什么是步进电机&#xff1f; 2.2.1 步进电机驱动板 静态参数 动态参数 2.2.2 五线四相 单相激励步进 双相激励步进 混合激励驱动 2.3 细分驱动 2.4 通过数字信号控制旋转位置和转速。 2…

深入理解计算机系统 CSAPP 练习题9.9

这个函数和练习题9.8的find_fit函数相关,asize是我们实际需要的大小,但是find_fit函数返回的bp有可能是比我们需要的还大的块,此时我们需要对bp进行分割.

kind kubernetes(k8s虚拟环境)使用本地docker的镜像

kubernetes中&#xff0c;虽然下载镜像使用docker&#xff0c;但是存储在docker image里的镜像是不能被k8s直接使用的&#xff0c;但是kind不同&#xff0c;可以使用下面的方法&#xff0c;让kind kubernetes环境使用docker image里的镜像。 kind – Quick Start 例如&#x…

AGI 之 【Hugging Face】 的【文本摘要】的 [评估PEGASUS ] / [ 微调PEGASUS ] / [生成对话摘要] 的简单整理

AGI 之 【Hugging Face】 的【文本摘要】的 [评估PEGASUS ] / [ 微调PEGASUS ] / [生成对话摘要] 的简单整理 目录 AGI 之 【Hugging Face】 的【文本摘要】的 [评估PEGASUS ] / [ 微调PEGASUS ] / [生成对话摘要] 的简单整理 一、简单介绍 二、文本摘要 三、在CNN/Daily…

【python算法学习1】用递归和循环分别写下 fibonacci 斐波拉契数列,比较差异

问题&#xff1a; fibonacci 斐波拉契数列&#xff0c;用递归和循环的方法分别写,比较递归和循环的思路和写法的差别 最直接的思路&#xff0c;是写递归方法 循环方法的稍微有点绕&#xff0c;我觉得问题主要是出在&#xff0c;总结循环的通项公式更麻烦&#xff0c;难在数学…