【YOLOv8】 用YOLOv8实现数字式工业仪表智能读数(一)

        上一篇圆形表盘指针式仪表的项目受到很多人的关注,咱们一鼓作气,把数字式工业仪表的智能读数也研究一下。本篇主要讲如何用YOLOV8实现数字式工业仪表的自动读数,并将读数结果进行输出,若需要完整数据集和源代码可以私信

目录

🍓🍓1.yolov8实现数字型仪表智能读数 

🙋🙋2.数字仪表表盘目标检测

🍋2.1准备数据

🍋2.2模型选择

🍋2.3加载预训练模型

🍋2.4数据组织 

🍉🍉3.目标检测训练代码

整理不易,欢迎一键三连!!!

送你们一条美丽的--分割线--


🍓🍓1.yolov8实现数字型仪表智能读数 

        首先介绍下数字型仪表的数据集如下所示,包含了各种数字型仪表:

       


         最后实现的效果如下:

        从原始数据输入至最后输出仪表读数,共需要3步:

  1. 从原始影像中通过目标检测识别出表盘的位置
  2. 基于第一步的结果将表盘的位置切分出来,再进一步通过目标检测识别表盘中的数字
  3. 基于第二步的结果对表盘中的数字进行智能读数

       

         此篇主要介绍第一步【从原始影像中通过目标检测识别出表盘的位置

🙋🙋2.数字仪表表盘目标检测

        通过目标检测方法对数字仪表表盘进行目标识别的方法不限,本文仍以YOLOv8为例进行说明。

🍋2.1准备数据

        训练数据集共包含390张,验证集140张,测试集139张。部分训练数据如下图所示。

        label部分采用YOLO格式的txt文件,格式如下所示:

🍋2.2模型选择


        以YOLOv8n为例,模型选择代码如下:

model = YOLO('yolov8n.yaml')  # build a new model from YAML
model = YOLO('yolov8n.pt')  # load a pretrained model (recommended for training)
model = YOLO('yolov8n.yaml').load('yolov8n.pt')  # build from YAML and transfer weights


        其中yolov8n.yaml为./ultralytics/cfg/models/v8/yolov8n.yaml,可根据自己的数据进行模型调整,打开yolov8n.yaml显示内容如下:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
 
# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
 
# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9
 
# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, C2f, [512]] # 12
 
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 3, C2f, [256]] # 15 (P3/8-small)
 
  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]] # cat head P4
  - [-1, 3, C2f, [512]] # 18 (P4/16-medium)
 
  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]] # cat head P5
  - [-1, 3, C2f, [1024]] # 21 (P5/32-large)
 
  - [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4, P5)

        主要需要修改的地方为nc,也就是num_class,此处如果是自己的表盘识别数据,那就要换成自己的表盘类别,此处我的输入影像中只有表盘这一个类别,所以nc=1。

        如果其他的模型参数不变的话,就默认保持原版yolov8,需要改造模型结构的大佬请绕行

🍋2.3加载预训练模型

        加载预训练模型yolov8n.pt,可以在第一次运行时自动下载,如果受到下载速度限制,也可以自行下载好(下载链接),放在对应目录下即可。

 

🍋2.4数据组织 

         yolov8还是以yolo格式的数据为例,./ultralytics/cfg/datasets/data.yaml的内容示例如下:

# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/coco8  # dataset root dir
train: images/train  # train images (relative to 'path') 4 images
val: images/val  # val images (relative to 'path') 4 images
test:  # test images (optional)
 
# Classes (80 COCO classes)
names:
  0: person
  1: bicycle
  2: car
  # ...
  77: teddy bear
  78: hair drier
  79: toothbrush

        此处建议根据自己的数据集设置新建一个shuziyibiao_data.yaml文件,放在./ultralytics/cfg/datasets/目录下,最后数据集设置就可以直接用自己的shuziyibiao_data.yaml文件了。以我的shuziyibiao_data.yaml文件为例:


path: /home/datasets/shuziyibiao_dataset  # dataset root dir
train: images/train  # train images (relative to 'path') 4 images
val: images/val  # val images (relative to 'path') 4 images
test: images/test # test images (optional)
 
names:
  0: biao

🍉🍉3.目标检测训练代码


        准备好数据和模型之后,就可以开始训练了,train.py的内容显示为:

from ultralytics import YOLO
 
# Load a model
model = YOLO('yolov8n.yaml')  # build a new model from YAML
model = YOLO('yolov8n.pt')  # load a pretrained model (recommended for training)
model = YOLO('yolov8n.yaml').load('yolov8n.pt')  # build from YAML and transfer weights
 
# Train the model
results = model.train(data='shuziyibiao_data.yaml', epochs=50, imgsz=640)

训练完成后的结果如下:

        其中weights文件夹内hi包含2个模型,一个best.pth,一个last.pth。

        至此就可以使用best.pth进行推理预测表盘位置了。

        为了方便下一步的表盘中的数字识别任务,可以将框内的表盘提取并裁剪出来,方便后续使用。裁剪后的表盘如下所示。

【YOLOv8】 用YOLOv8实现数字式工业仪表智能读数(二)

整理不易,欢迎一键三连!!!


送你们一条美丽的--分割线--


🌷🌷🍀🍀🌾🌾🍓🍓🍂🍂🙋🙋🐸🐸🙋🙋💖💖🍌🍌🔔🔔🍉🍉🍭🍭🍋🍋🍇🍇🏆🏆📸📸⛵⛵⭐⭐🍎🍎👍👍🌷🌷 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/791846.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

springboot零食盒子-计算机毕业设计源码50658

目 录 1 绪论 1.1 研究背景 1.2研究意义 1.3论文结构与章节安排 2 微信小程序的零食盒子系统分析 2.1 可行性分析 2.2 系统流程分析 2.2.1 数据流程 3.3.2 业务流程 2.3 系统功能分析 2.3.1 功能性分析 2.3.2 非功能性分析 2.4 系统用例分析 2.5本章小结 3 微信…

postgres 的dblink使用,远程连接数据库

一.安装下载 dblink create extension if not exists dblink 查看是否已经安装 select * from pg_extension;二.运行,查询数据 其中,第一个参数是dblink名字,也可以是连接字符串。 第二个参数是要执行的SQL查询语句。AS子句用于指定返回结…

FastAPI 学习之路(三十九)对开发接口进行测试

概况 对于开发好的接口需要进行测试之后才能发布。当我们在开发的时候,没有提前测试,我们也要对我们自己的接口进行测试,那么FastApi自身也带有针对开发的接口进行测试的功能。我们看下FastApi官方给我们提供了什么样的支持。 接口还是基于…

zerotier-one自建根服务器方法 六

一、简介 前面几篇文章已经写完了自己建立服务器的方法与常见问题,今天就写一下服务器备份与迁移吧。 二、准备工作 准备一个有公网IP的云主机。 要稳定性、安全性、不差钱的可以使用阿里、腾讯等大厂的云服务器。 本人穷屌丝一枚,所以我用的是免费的“…

一.9 重要主题

在此,小结一下我们旋风式的系统漫游。这次讨论得出一个很重要的观点,那就是系统不仅仅只是硬件。系统是硬件和系统软件互相交织的集合体。它们必须共同协作以达到运行应用程序的最终目的。本书的余下部分会讲述硬件和软件的详细内容,通过了解…

中国AI大模型,谁是实力派

继2022年11月,OpenAI发布旗下AI聊天机器人应用ChatGPT后,大模型逐渐走入公众视野。2023年被视为中国大模型的发展元年。 这一年里,中国本土厂商、各大科技巨头、科研院所、初创公司都纷纷下场,部署自己的大模型。从优化算法全面追…

Linux 忘记root密码,通过单用户模式修改

银河麒麟桌面操作系统 V10(sp1)”忘记用户密码,需要修改用户密码所写,可用于 X86 架构和 arm 架构。 2. 选择第一项,在上图界面按“e”键进行编辑修改。 3. 在以 linux 开头这行的行末,添加“init/bin/bas…

充气膜游泳馆安全吗—轻空间

充气膜游泳馆,作为一种新型的游泳场馆,以其独特的结构和众多优点,逐渐受到各地体育设施建设者的青睐。然而,关于充气膜游泳馆的安全性,一些人仍然心存疑虑。那么,充气膜游泳馆到底安全吗?轻空间…

基督教堂变身“知识网红”!枢纽云助力传统教堂数智化升级

随着互联网技术的发展,知识获取的方式悄然发生了改变。传统的书籍、课堂教学等知识传递模式逐渐被线上课程、电子书、知识付费平台等新形式所补充和替代。知识付费,作为一种新兴的知识传播和变现模式,迅速崛起并受到广泛关注和欢迎。 何为知…

PyTorch实现BERT预训练模型转化指南

huggingface官方的介绍: https://huggingface.co/transformers/converting_tensorflow_models.html 直接用命令行 把箭头处路径改为自己放原有tf版本预训练模型的路径 回车后会有一大堆提示,然后发现路径下多了一个bin文件,加上原本的config…

[图解]企业应用架构模式2024新译本讲解25-层超类型

1 00:00:01,820 --> 00:00:03,730 层超类型这个模式 2 00:00:03,740 --> 00:00:07,590 它是属于基本模式之一了 3 00:00:07,880 --> 00:00:10,270 第18章的基本模式之一 4 00:00:13,560 --> 00:00:14,590 定义是这样的 5 00:00:15,160 --> 00:00:16,070 &am…

MySQL黑马教学对应视屏笔记分享之聚合函数,以及排序语句的讲解笔记

聚合函数 注意:null值不参与聚合函数的计算。 分组查询 2.where与having的区别 执行时机不同:where是在分组之前进行过滤,不满足where条件,不参与分组;而having是分组之后对结果进行过滤。判断条件不同:w…

代替EXCEL-ReoGrid .NET开源快速、强大的电子表格组件

今天大姚给大家分享一个.NET开源(MIT License)、快速、强大、免费的电子表格组件,支持数据格式、冻结、大纲、公式计算、图表、脚本执行等。兼容 Excel 2007 (.xlsx) 格式,支持WinForm、WPF和Android平台:ReoGrid。 项…

新型球幕影院:可移动式大空间的未来—轻空间

随着科技的不断进步和人们对多样化娱乐需求的提升,新型球幕影院作为一种创新的观影方式,逐渐进入大众视野。它不仅提供了沉浸式的视觉体验,还拥有可移动式大空间的特点,适应多种使用场景。轻空间将详细介绍新型球幕影院的独特优势…

LVS实验

LVS实验 nginx1 RS1 192.168.11.137 nginx2 RS2 192.168.11.138 test4 调度器 ens33 192.168.11.135 ens36 12.0.0.1 test2 客户端 12.0.0.10 一、test4 配置两张网卡地址信息 [roottest4 network-scripts]# cat ifcfg-ens33 TYPEEthernet BOOTPROTOstatic DEFROUTEyes DEVIC…

sql常用语句:

1.联合查询 对表中的数据进行限制; 2.从一个表复制到另一个表 SELECT INTO 将数据复制到一个新表(有的 DBMS 可以覆盖已经存在的表,这依赖于 所使用的具体 DBMS) SELECT *(字段) INTO CustCopy FROM Cu…

TQSDRPI开发板教程:编译openwifi工程

本例程基于SDRPI开发板,在Ubuntu中使用vivado编译openwifi工程,最终生成BOOT.BIN文件。需要拥有安装vivado2021.1版本的ubuntu系统或虚拟机。 首先需要下载openwifi的编译文件,可以在GitHub中搜索openwifi-hw,网址如下所示&#…

Blender 中导出模型fbx

准备模型:确保你的模型已经完成,并且所有的材质、纹理等都已设置好。 应用所有变换: 选择模型,按下 CtrlA,选择 "All Transforms" 以应用所有的变换(位置、旋转和缩放)。 导出模型&a…

【初阶数据结构】树与二叉树:从零开始的奇幻之旅

初阶数据结构相关知识点可以通过点击以下链接进行学习一起加油!时间与空间复杂度的深度剖析深入解析顺序表:探索底层逻辑深入解析单链表:探索底层逻辑深入解析带头双向循环链表:探索底层逻辑深入解析栈:探索底层逻辑深入解析队列:探索底层逻辑深入解析循环队列:探索…

数据结构(Java):集合类LinkedList集合类Stack

1、集合类LinkedList 1.1 什么是LinkedList LinkedList的底层是一个双向链表的结构(故不支持随机访问): 在LinkedList中,定义了first和last,分别指向链表的首节点和尾结点。 每个节点中有一个成员用来存储数据&…