【机器学习】初学者经典案例(随记)

🎈边走、边悟🎈迟早会好

一、概念

机器学习是一种利用数据来改进模型性能的计算方法,属于人工智能的一个分支。它旨在让计算机系统通过经验自动改进,而不需要明确编程。

类型

  1. 监督学习:使用带标签的数据进行训练,包括分类(如垃圾邮件检测)和回归(如房价预测)。
  2. 无监督学习:使用不带标签的数据进行训练,包括聚类(如客户细分)和降维(如主成分分析)。
  3. 强化学习:通过与环境的交互学习策略,以最大化累积奖励(如AlphaGo)。

二、 常见算法

2.1监督学习算法
  • 线性回归:用于回归任务,假设目标变量与输入特征之间存在线性关系。
  • 逻辑回归:用于二分类任务,输出一个介于0和1之间的概率。
  • 决策树:树状结构的模型,易于理解和解释。
  • 支持向量机(SVM):寻找能够最大化类间间隔的决策边界。
  • K近邻(KNN):基于距离度量的简单算法,预测时考虑最近的K个邻居。
  • 朴素贝叶斯:基于贝叶斯定理的分类算法,假设特征之间条件独立。
2.2无监督学习算法
  • K均值聚类:将数据分成K个簇,使得簇内数据的相似度最大。
  • 层次聚类:构建一个层次结构的聚类树,逐步合并或分割簇。
  • 主成分分析(PCA):将高维数据投影到低维空间,保留数据的主要变异信息。
  • 独立成分分析(ICA):类似于PCA,但假设数据成分相互独立。
2.3强化学习算法
  • Q学习:基于状态-动作对的值函数,通过Q值迭代更新策略。
  • 深度Q网络(DQN):结合深度学习的Q学习算法,用神经网络近似Q值。
  • 策略梯度方法:直接优化策略,使得期望奖励最大化。

三.、模型评估

评估指标
分类:

  • 准确率:正确预测的样本数占总样本数的比例。
  • 精确率:预测为正类的样本中实际为正类的比例。
  • 召回率:实际为正类的样本中被正确预测为正类的比例。
  • F1分数:精确率和召回率的调和平均数。
  • 混淆矩阵:总结预测结果的矩阵,显示真阳性、假阳性、真阴性和假阴性。

回归:

  • 均方误差(MSE):预测值与真实值之差的平方和的平均数。
  • 均方根误差(RMSE):MSE的平方根。
  • 平均绝对误差(MAE):预测值与真实值之差的绝对值的平均数。
  • R²:解释回归模型对数据变异的比例。

交叉验证
通过将数据集划分为若干子集,反复进行训练和验证,以评估模型的性能稳定性和泛化能力。

四、 优化技术

4.1 超参数优化
  • 网格搜索:对所有可能的参数组合进行穷举搜索,找到最佳参数组合。
  • 随机搜索:随机选择参数组合进行搜索,相对高效。
  • 贝叶斯优化:利用贝叶斯推理逐步优化参数选择过程。
4.2 正则化

通过在损失函数中添加正则项,防止过拟合:

  • L1正则化:加入参数的绝对值和(Lasso回归)。
  • L2正则化:加入参数的平方和(Ridge回归)。
4.3 特征选择

选择对模型性能影响较大的特征,去除冗余或相关性高的特征。

五、 常见问题及解决方法

5.1 过拟合与欠拟合
  • 过拟合:模型在训练集上表现良好,但在测试集上表现差。解决方法包括增加数据量、正则化、使用更简单的模型等。
  • 欠拟合:模型在训练集上和测试集上都表现不佳。解决方法包括增加模型复杂度、添加更多特征等。
5.2 数据不平衡

当某一类样本数量远多于其他类时,模型可能偏向于预测多数类。解决方法包括重采样、调整分类阈值、使用加权损失函数等。

 六、入门经典案例

1. 鸢尾花数据集分类(Iris Dataset Classification)
背景

        鸢尾花数据集是机器学习领域中非常经典的数据集,由英国统计学家和生物学家Fisher在1936年提出。该数据集包含150个样本,每个样本有4个特征:花萼长度、花萼宽度、花瓣长度和花瓣宽度。目标是根据这些特征将鸢尾花分为三类:山鸢尾(Setosa)、变色鸢尾(Versicolor)和维吉尼亚鸢尾(Virginica)。

过程
  1. 数据预处理:加载数据并进行基本的清洗和探索性数据分析(EDA)。
  2. 特征选择:选择合适的特征来进行分类。
  3. 数据划分:将数据集分为训练集和测试集,一般采用80/20或70/30的比例。
  4. 模型选择:选择合适的分类算法,如K近邻(KNN)、支持向量机(SVM)、决策树(Decision Tree)等。
  5. 模型训练:在训练集上训练模型。
  6. 模型评估:在测试集上评估模型的性能,常用的评估指标包括准确率、混淆矩阵、F1分数等。
  7. 模型优化:根据评估结果进行参数调优或选择其他模型。
详解
# 示例代码(以KNN为例)
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix

# 加载数据
iris = load_iris()
X = iris.data
y = iris.target

# 数据划分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 模型训练
knn = KNeighborsClassifier(n_neighbors=3)
knn.fit(X_train, y_train)

# 模型预测
y_pred = knn.predict(X_test)

# 模型评估
print("Accuracy:", accuracy_score(y_test, y_pred))
print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred))
print("Classification Report:\n", classification_report(y_test, y_pred))
2. 房价预测(Housing Price Prediction)
背景

房价预测是回归问题的经典案例之一,通常使用波士顿房价数据集。该数据集包含506个数据点,每个数据点有13个特征(如房间数量、房龄、犯罪率等),目标是预测房屋的中位数价格。

过程
  1. 数据预处理:加载数据,处理缺失值和异常值,进行EDA。
  2. 特征工程:选择重要特征,并进行特征缩放。
  3. 数据划分:将数据集分为训练集和测试集。
  4. 模型选择:选择回归模型,如线性回归(Linear Regression)、随机森林回归(Random Forest Regression)等。
  5. 模型训练:在训练集上训练模型。
  6. 模型评估:在测试集上评估模型性能,常用评估指标包括均方误差(MSE)、均方根误差(RMSE)等。
  7. 模型优化:根据评估结果进行参数调优或选择其他模型。
详解
# 示例代码(以线性回归为例)
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

# 加载数据
boston = load_boston()
X = boston.data
y = boston.target

# 数据划分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 模型训练
lr = LinearRegression()
lr.fit(X_train, y_train)

# 模型预测
y_pred = lr.predict(X_test)

# 模型评估
mse = mean_squared_error(y_test, y_pred)
rmse = mse ** 0.5
print("MSE:", mse)
print("RMSE:", rmse)
3. 手写数字识别(Digit Recognition)
背景

手写数字识别是计算机视觉中的经典问题,通常使用MNIST数据集。该数据集包含60000个训练样本和10000个测试样本,每个样本是28x28像素的灰度图像,代表手写的数字0-9。

过程
  1. 数据预处理:加载数据,并进行基本的图像处理。
  2. 特征工程:将图像数据展平或进行特征提取。
  3. 数据划分:将数据集分为训练集和测试集。
  4. 模型选择:选择分类模型,如卷积神经网络(CNN)、支持向量机(SVM)等。
  5. 模型训练:在训练集上训练模型。
  6. 模型评估:在测试集上评估模型性能,常用评估指标包括准确率、混淆矩阵等。
  7. 模型优化:根据评估结果进行参数调优或选择其他模型。
详解
# 示例代码(以简单的多层感知机为例)
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten
from tensorflow.keras.utils import to_categorical

# 加载数据
(X_train, y_train), (X_test, y_test) = mnist.load_data()

# 数据预处理
X_train = X_train.reshape(-1, 28*28).astype('float32') / 255.0
X_test = X_test.reshape(-1, 28*28).astype('float32') / 255.0
y_train = to_categorical(y_train, 10)
y_test = to_categorical(y_test, 10)

# 构建模型
model = Sequential([
    Flatten(input_shape=(28*28,)),
    Dense(128, activation='relu'),
    Dense(64, activation='relu'),
    Dense(10, activation='softmax')
])

# 编译模型
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

# 训练模型
model.fit(X_train, y_train, epochs=10, batch_size=32, validation_split=0.2)

# 评估模型
loss, accuracy = model.evaluate(X_test, y_test)
print("Loss:", loss)
print("Accuracy:", accuracy)

 🌟感谢支持 听忆.-CSDN博客

🎈众口难调🎈从心就好

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/791680.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【游戏客户端】大话slg玩法架构(二)背景地图

【游戏客户端】大话slg玩法架构(二)背景地图 大家好,我是Lampard家杰~~ 今天我们继续给大家分享SLG玩法的实现架构,关于SLG玩法的介绍可以参考这篇上一篇文章:【游戏客户端】制作率土之滨Like玩法 PS:和之前…

仕考网:公务员如何备考申论

在备战公务员考试的申论部分时,掌握一定的技巧,遵循特定的步骤是至关重要的。以下是一些备考策略,希望能帮助到大家: 1. 掌握考试大纲和命题趋势 在考试大纲中明确了题目的类型和可能涉及的主题范围,考生可以聚焦到关…

批量提取Word文档中表格内容

1 背景 有一个word文件,其中包含多个格式一致的表格(如下图),需要将其内容进行提取,填写到excel中 2 实现代码 ## 导入工具包 from docx import Document import pandas as pd## 读取 Word 文件 document Document(…

MySQL实现数据备份的方式可以基于哪几种?

MySQL 数据库实现数据备份的方式主要有以下几种: 物理备份 (Physical Backup): 冷备份 (Cold Backup):在数据库关闭的情况下,直接复制数据库文件(数据文件、日志文件等)。这种方式操作简单,但是…

UML类图的建立过程

1. 概念层类图 概念层的类图描述的是现实世界中对问题领域的概念理解,类图中表达的类与现实世界的问题领域中的实际事物有着明显的对应关系,类之间的关系也与问题领域中实际事物之间的关系有着明显的对应关系。在概念层类图阶段很少考虑或者几乎不需要考…

应急响应-ELK日志分析系统

🎼个人主页:金灰 😎作者简介:一名简单的大一学生;易编橙终身成长社群的嘉宾.✨ 专注网络空间安全服务,期待与您的交流分享~ 感谢您的点赞、关注、评论、收藏、是对我最大的认可和支持!❤️ 🍊易编橙终身成长社群&#…

3、视图和模板

续上一篇,这一篇 着重于创建公共接口——“视图” 第三部分——3、视图和模板 1、概述2、编写更多视图原理——django依次访问了什么文件 3、写一个真正有用的视图一个快捷函数 render() render——渲染 4、抛出404错误一个快捷函数 get_object_or_404() 5、使用模…

kvm图形化管理工具virt-manager安装

1、Virt-manager简介 Virt-manager是一个桌面用户界面,用于通过libvirt管理虚拟机。它主要针对KVM虚拟机,但也管理Xen和LXC(linux容器)。它提供了运行域、它们的实时性能和资源利用率统计信息的摘要视图。向导可以创建新域&#…

MFC扩展库BCGControlBar Pro v35.0 - 可视化管理主题等全新升级

BCGControlBar库拥有500多个经过全面设计、测试和充分记录的MFC扩展类。 我们的组件可以轻松地集成到您的应用程序中,并为您节省数百个开发和调试时间。 BCGControlBar专业版 v35.0已全新发布了,这个版本改进类Visual Studio 2022的视觉主题、增强对多个…

camera-qsc-crosstalk校准数据XTALK回写

问题背景 手机越做越紧凑,需要模组和芯片尺寸越做越小,在尺寸一定的基础上,高像素和大像素,对于手机摄像头来说,一直是一对矛盾的存在。 高像素:带来高分辨率画质大像素:带来暗态下高感光度和…

【MyBatis】——入门基础知识必会内容

🎼个人主页:【Y小夜】 😎作者简介:一位双非学校的大二学生,编程爱好者, 专注于基础和实战分享,欢迎私信咨询! 🎆入门专栏:🎇【MySQL&#xff0…

Covalent Network(CXT)通过社区投票将代币迁移并更名为 CXT,以推动人工智能更深层次的创新

专注于人工智能和 Web3 的模块化数据基础设施 Covalent Network(CXT)宣布,其治理提案已通过社区投票并顺利实施,即将原生代币 CQT 迁移为新的 CXT 代币,并部署至新的合约。这一关键性转变标志着 Covalent Network&…

Android焦点之InputWindows的更新(一)

找到焦点窗口后,回到DisplayContent的updateFocusedWindowLocked方法中继续往下走 执行到此处会进行InputWindows的更新 InputMonitor#setInputFocusLw:以上过程伴随日志:WindowManager: Input focus has changed to Window{a44139a u0 Noti…

linux系统中SPI驱动框架以及代码的详解

大家好,今天给大家分享一下,如何使用SPI子系统,详细实现以及具体的操作方法。 第一:SPI驱动框架模板 参考内核头文件:include\linux\spi\spi.h。 1、SPI平台总线设备驱动模型 Linux驱动程序开始基于“平台总线设备驱动模型”,将驱动程序分为两块: * 左边注册一个platfo…

算法力扣刷题记录 四十一【N叉树遍历】

前言 依然是遍历问题。由二叉树扩展到N叉树遍历。 记录 四十一【N叉树遍历】 一、【589. N叉树的前序遍历】 题目 给定一个 n 叉树的根节点 root ,返回 其节点值的 前序遍历 。 n 叉树 在输入中按层序遍历进行序列化表示,每组子节点由空值 null 分隔…

FLinkCDC引起的生产事故(二)

背景: 最近在做实时数据的抽取工作,利用FLinkCDC实时抽取目标库Oracle的数据到Doris中,但是在抽取的过程中,会导致目标库的生产库数据库非常卡顿,为了避免对生产环境的数据库造成影响,对生产环境的数据库利…

Android 自定义Edittext 和TextView 提示文字和填入内容不同的粗细组件

近期项目中又EditText 以及TextView 这两个组件需要用到提示文字 以及 填入文字要保持不同的粗细程度,所以记录一下 首先 是EditText 组件的自定义 BLEditText 继承的这个组件是一个三方的组件,可以在很大程度上减少drawable的编写,有兴趣的可以去相关的Git去看一下 点击查看,…

Redis 主从复制,集群与高可用

虽然Redis可以实现单机的数据持久化,但无论是RDB也好或者AOF也好,都解决不了单点宕机问题,即一旦单台 redis服务器本身出现系统故障、硬件故障等问题后,就会直接造成数据的丢失 此外,单机的性能也是有极限的,因此需要使用另外的技…

合合信息大模型加速器亮相WAIC大会:文档解析与文本识别新突破

合合信息大模型加速器亮相WAIC大会:文档解析与文本识别新突破 文章目录 合合信息大模型加速器亮相WAIC大会:文档解析与文本识别新突破前言合合信息TextIn平台:智能文档处理的领军者文档解析引擎:百页文档秒级处理大模型的发展背景…

TortoiseSVN-VisualSVNServer-软件代码文本资源版本控制管理-版本比较及差异文件

文章目录 1.VisualSVNServer安装2.TortoiseSVN安装2.1.检出2.2.提交资源2.3.更新资源2.4.返回版本2.5.比较软件可更改2.6.在此创建版本库3.TortoiseSVN版本差异文件1.VisualSVNServer安装 从官网下载,或者csdn下载链接: https://download.csdn.net/download/m0_67316550/8952…