deep learning 环境配置

1 NVIDIA驱动安装

ref link: https://blog.csdn.net/weixin_37926734/article/details/123033286
在这里插入图片描述

2 cuda安装

ref link: https://blog.csdn.net/qq_63379469/article/details/123319269

进去网站 https://developer.nvidia.com/cuda-toolkit-archive 选择想要安装的cuda版本
在这里插入图片描述
安装过程:
(1)分别选择continue与输入accept
(2)最重要的是在选择CUDA Installer时,要把Driver这一项取消掉([]中是空的表示没有选择安装这项,[x]表示有安装这项),因为第一步已经安装过NVIDIA驱动了
(3)在zshrc或者bashrc中添加cuda bin和lib的path

###########cuda################
export PATH="/usr/local/cuda-11.1/bin:$PATH"
export LD_LIBRARY_PATH="/usr/local/cuda-11.1/lib64:$LD_LIBRARY_PATH"

3 安装anaconda

第一步:下载 https://www.anaconda.com/download

# 第二步:安装
./Anaconda3-2024.02-1-Linux-x86_64.sh

# 第三步:修改bashrc或者zshrc的快捷命令,注意替换username。这样在终端输出aconda就会进入conda环境,而不用频繁注释bashrc中的代码
function aconda {
# >>> conda initialize >>>
# !! Contents within this block are managed by 'conda init' !!
    __conda_setup="$('/home/username/anaconda3/bin/conda' 'shell.bash' 'hook' 2> /dev/null)"
    if [ $? -eq 0 ]; then
        eval "$__conda_setup"
    else
        if [ -f "/home/username/anaconda3/etc/profile.d/conda.sh" ]; then
            . "/home/username/anaconda3/etc/profile.d/conda.sh"
        else
            export PATH="/home/username/anaconda3/bin:$PATH"
        fi
    fi
    unset __conda_setup
# <<< conda initialize <<<
}

# 第四步:修改源
# 删除以前的镜像,恢复默认状态
conda config --remove-key channels

# 添加源
conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro
conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2

# 显示检索路径
conda config --set show_channel_urls yes
# 显示镜像通道
conda config --show channels

4 配置deep learning环境:以maptracker为例

查看maptracker readme,可以看到

pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html

其中对于cuda的要求的11.1版本,所以需要按照这个版本要求安装下cuda,同时记得在bashrc中修改cuda bin、lib的path

pytorch和cuda版本对应关系:https://pytorch.org/get-started/previous-versions/

然后安装其他依赖

# Install mmcv-series
pip install mmcv-full==1.6.0
pip install mmdet==2.28.2
pip install mmsegmentation==0.30.0
git clone https://github.com/open-mmlab/mmdetection3d.git
cd mmdetection3d
git checkout v1.0.0rc6 
pip install -e .


pip install -r requirements.txt

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/791110.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

光学传感器图像处理流程(二)

光学传感器图像处理流程&#xff08;二&#xff09; 2.4. 图像增强2.4.1. 彩色合成2.4.2 直方图变换2.4.3. 密度分割2.4.4. 图像间运算2.4.5. 邻域增强2.4.6. 主成分分析2.4.7. 图像融合 2.5. 裁剪与镶嵌2.5.1. 图像裁剪2.5.2. 图像镶嵌 2.6. 遥感信息提取2.6.1. 目视解译2.6.2…

PyTorch复现PointNet——模型训练+可视化测试显示

因为项目涉及到3D点云项目&#xff0c;故学习下PointNet这个用来处理点云的神经网络 论文的话&#xff0c;大致都看了下&#xff0c;网络结构有了一定的了解&#xff0c;本博文主要为了下载调试PointNet网络源码&#xff0c;训练和测试调通而已。 我是在Anaconda下创建一个新的…

硅纪元AI应用推荐 | 百度橙篇成新宠,能写万字长文

“硅纪元AI应用推荐”栏目&#xff0c;为您精选最新、最实用的人工智能应用&#xff0c;无论您是AI发烧友还是新手&#xff0c;都能在这里找到提升生活和工作的利器。与我们一起探索AI的无限可能&#xff0c;开启智慧新时代&#xff01; 百度橙篇&#xff0c;作为百度公司在202…

运算放大器(运放)输入失调电压

输入失调电压定义 理想状态下&#xff0c;如果运算放大器的两个输入端电压完全相同&#xff0c;输出应为0 V。实际上&#xff0c;还必须在输入端施加小差分电压&#xff0c;强制输出达到0。该电压称为输入失调电压VOS。输入失调电压可以看成是电压源VOS&#xff0c;与运算放大…

【排序 - 快速排序】

快速排序&#xff08;Quick Sort&#xff09;是一种高效的排序算法&#xff0c;它基于分治&#xff08;Divide and Conquer&#xff09;的策略。这种排序算法的核心思想是选择一个基准元素&#xff0c;将数组分割成两部分&#xff0c;使得左边的元素都小于等于基准元素&#xf…

实验-ENSP实现防火墙区域策略与用户管理

目录 实验拓扑 自己搭建拓扑 实验要求 实验步骤 整通总公司内网 sw3配置vlan 防火墙配置IP 配置安全策略&#xff08;DMZ区内的服务器&#xff0c;办公区仅能在办公时间内&#xff08;9: 00- 18:00)可以访问&#xff0c;生产区的设备全天可以访问&#xff09; 配置nat策…

(总结)编译ORB_SLAM2遇到的错误

目录 第一个错误error: ‘CV_BGR2GRAY’ was not declared in this scope 第二个错误error: ‘CV_GRAY2BGR’ was not declared in this scope 第三个错误是没有那个文件或目录 26 | #include 第四个错误是‘CV_LOAD_IMAGE_UNCHANGED’ was not declared in this scope 第…

Golang | Leetcode Golang题解之第228题汇总区间

题目&#xff1a; 题解&#xff1a; func summaryRanges(nums []int) (ans []string) {for i, n : 0, len(nums); i < n; {left : ifor i; i < n && nums[i-1]1 nums[i]; i {}s : strconv.Itoa(nums[left])if left < i-1 {s "->" strconv.It…

腾讯广告优量汇Android一面凉经(2024)

腾讯广告优量汇Android一面凉经(2024) 笔者作为一名双非二本毕业7年老Android, 最近面试了不少公司, 目前已告一段落, 整理一下各家的面试问题, 打算陆续发布出来, 供有缘人参考。今天给大家带来的是《腾讯广告优量汇Android一面凉经(2024)》。 面试职位: 腾讯广告优量汇-SDK客…

【算法】排序算法介绍 附带C#和Python实现代码

1. 冒泡排序(Bubble Sort) 2. 选择排序(Selection Sort) 3. 插入排序(Insertion Sort) 4. 归并排序(Merge Sort) 5. 快速排序(Quick Sort) 排序算法是计算机科学中的一个基础而重要的部分,用于将一组数据按照一定的顺序排列。下面介绍几种常见的排序算法,…

MVC分页

public ActionResult Index(int ? page){IPagedList<EF.ACCOUNT> userPagedList;using (EF.eMISENT content new EF.eMISENT()){第几页int pageNumber page ?? 1;每页数据条数&#xff0c;这个可以放在配置文件中int pageSize 10;//var infoslist.C660List.OrderBy(…

算法通关:004_1选择排序

代码一定要自己手敲理解 public class _004 {//选择排序&#xff0c;冒泡排序&#xff0c;插入排序//交换public static void swap(int[] arr,int i ,int j){int temp arr[i];arr[i] arr[j];arr[j] temp;}//选择排序public static void selectSort(int[] arr){if(arr null…

PDF 分割拆分 API 数据接口

PDF 分割拆分 API 数据接口 文件处理&#xff0c;PDF 高效的 PDF 分割工具&#xff0c;高效处理&#xff0c;可永久存储。 1. 产品功能 高效处理大文件&#xff1b;支持多语言字符识别&#xff1b;支持 formdata 格式 PDF 文件流传参&#xff1b;支持设置每个 PDF 文件的页数…

【PTA天梯赛】L1-005 考试座位号(15分)

作者&#xff1a;指针不指南吗 专栏&#xff1a;算法刷题 &#x1f43e;或许会很慢&#xff0c;但是不可以停下来&#x1f43e; 文章目录 题目题解try1 编译错误正确题解 总结 题目 题目链接 题解 try1 编译错误 #include<bits/stdc.h> using namespace std;typedef…

nginx正向代理、反向代理、负载均衡

nginx.conf nginx首要处理静态页面 反向代理 动态请求 全局模块 work processes 1; 设置成服务器内核数的两倍&#xff08;一般不不超过8个超过8个反而会降低性能一般4个 1-2个也可以&#xff09; netstat -antp | grep 80 查端口号 *1、events块&#xff1a;* 配置影响ngi…

微软Win11 24H2七月更新补丁KB5040435发布!附下载

系统之家于7月10日发出最新报道&#xff0c;微软为Win11用户发布了24H2版本七月的最新更新补丁KB5040435。用户升级系统后&#xff0c;会发现版本号升至 26100.1150。此次更新针对远程身份验证拨入用户服务(RADIUS)协议与 MD5冲突等问题进行修复。接下来跟随小编看看此次更新的…

利用【Python】【线性规划】优化工厂生产:实现智能资源配置与利润最大化的现代解决方案

目录 1. 问题背景和描述 1.1 问题背景 1.2 问题描述 2. 数学模型的建立 2.1决策变量 2.2 目标函数 2.3 约束条件 2.4 数学模型总结 3. 使用Python解决线性规划问题 3.1 导入必要的库 3.2 定义目标函数系数 3.3 定义不等式约束矩阵和向量 3.4 定义变量的边界 非负…

【Pytorch】RNN for Image Classification

文章目录 1 RNN 的定义2 RNN 输入 input, h_03 RNN 输出 output, h_n4 多层5 小试牛刀 学习参考来自 pytorch中nn.RNN()总结RNN for Image Classification(RNN图片分类–MNIST数据集)pytorch使用-nn.RNN 1 RNN 的定义 nn.RNN(input_size, hidden_size, num_layers1, nonlinea…

游戏视频是后期配音好还是边录边配 游戏视频怎么剪辑制作才能火 视频剪辑免费软件

游戏视频后期配音是先配还是先剪&#xff1f;游戏视频后期配音没有统一的准则&#xff0c;可以先配&#xff0c;也可以后配&#xff0c;主要是根据内容而定。游戏视频剪辑在游戏玩家中十分流行&#xff0c;那么&#xff0c;游戏视频怎么剪辑制作&#xff1f;下面让我们以具体的…

apache python使用

修改httpd.conf文件。 AddHandler cgi-script .cgi .py 代码 #!自己的python.exe #-*- coding:UTF-8 -*- print ("Content-type:text/html") print () print (<html>) print (<head>) print (<meta charset"gb2312">) print (<tit…