PyTorch复现PointNet——模型训练+可视化测试显示

因为项目涉及到3D点云项目,故学习下PointNet这个用来处理点云的神经网络
论文的话,大致都看了下,网络结构有了一定的了解,本博文主要为了下载调试PointNet网络源码,训练和测试调通而已。

我是在Anaconda下创建一个新的虚拟环境空间部署项目测试
大概用到的就这些了,后面调试项目时候缺少安装啥就行了

torch                     2.0.0+cu117
torchvision               0.15.0+cu117
python                    3.8.19
numpy                     1.24.3
matplotlib                3.7.5
opencv-python             4.10.0.84

一、下载源码和数据集

论文:《PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation》
GitHub源码:pointnet.pytorch
数据集下载:shapenetcore_partanno_segmentation_benchmark_v0.zip

大致的源码结构如下:
在这里插入图片描述

二、PyCharm打开项目

拿到项目,第一件事是要看下README.md
在这里插入图片描述
没啥高级词汇,大概能看出来啥意思就行

三、下载数据集

.sh文件是Linux下的脚本文件夹,我这是Windows操作系统,先打开看看这里面都写了啥
可视化工具在build.sh文件中,数据集在download.sh中,我这边就只用到必须的数据集

看下download.sh
在这里插入图片描述
知道了数据集下载的链接
数据集下载:https://shapenet.cs.stanford.edu/ericyi/shapenetcore_partanno_segmentation_benchmark_v0.zip
也就是第一部分中提到的数据集下载链接

四、分类任务

训练的话,通过README.md可以看出有两种,一种是分类任务,一种是分割任务

cd utils
python train_classification.py --dataset <dataset path> --nepoch=<number epochs> --dataset_type <modelnet40 | shapenet>

4.1 分类模型训练:train_classification.py

1,文件在utils文件夹下

在这里插入图片描述

2,README.md也说明了要配置的参数

python train_classification.py --dataset <dataset path> --nepoch=<number epochs> --dataset_type <modelnet40 | shapenet>

我把要配置的参数给整理到一块了,方便进行修改测试,其他的参数根据情况去修改即可
在这里插入图片描述

3,右击运行(Ctrl + Shift + F10),报错

在这里插入图片描述
修改进程数为0,parser.add_argument('--workers', type=int, help='number of data loading workers', default=0)
在这里插入图片描述

4,再次右击运行(Ctrl + Shift + F10)报错

OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized.
OMP: Hint This means that multiple copies of the OpenMP runtime have been linked into the program. That is dangerous, since it can degrade performance or cause incorrect results. The best thing to do is to ensure that only a single OpenMP runtime is linked into the process, e.g. by avoiding static linking of the OpenMP runtime in any library. As an unsafe, unsupported, undocumented workaround you can set the environment variable KMP_DUPLICATE_LIB_OK=TRUE to allow the program to continue to execute, but that may cause crashes or silently produce incorrect results. For more information, please see http://www.intel.com/software/products/support/.

在这里插入图片描述
按要求加入,os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" ,允许程序在存在多个 libiomp5md.dll 副本的情况下继续执行,但这可能会导致不稳定的行为,包括程序崩溃或产生不正确的结果,所以它只是一个临时的解决方案

import os                                  
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"  

在这里插入图片描述

5,再次右击运行(Ctrl + Shift + F10),开始训练

在这里插入图片描述
让它跑着吧先~~也就5个epoch

6,因为这里训练的epoch为5,每个epoch都会存下来一个模型

可以看到在utils下的cls文件下有五个模型
在这里插入图片描述

4.2 分类模型测试:show_cls.py

1,utils文件夹下的show_cls.py文件用于分类模型测试

在这里插入图片描述

2,指定两个参数即可

模型路径:parser.add_argument('--model', type=str, default = './cls/cls_model_4.pth', help='model path')
数据集的路径:root='../dataset/shapenetcore_partanno_segmentation_benchmark_v0'
在这里插入图片描述

3,右击运行(Ctrl + Shift + F10),测试成功

可以看到测试的损失和准确率,目前作者没有提供可视化结果展示
在这里插入图片描述

五、分割任务

能把分类任务跑通,分割任务都是类似的

5.1 分割模型训练:train_segmentation.py

python train_segmentation.py --dataset <dataset path> --nepoch=<number epochs>

1,文件在utils文件夹下

在这里插入图片描述

2,看README.md指定配置参数

python train_segmentation.py --dataset <dataset path> --nepoch=<number epochs>
在这里插入图片描述

3,右击运行(Ctrl + Shift + F10),开始训练

开始训练
在这里插入图片描述
epoch为25

4,epoch为25,会保存25个模型

可以看到在utils下的seg文件下有二十五个模型
在这里插入图片描述

5.2 分割任务测试:show_seg.py

1,utils文件夹下的show_seg.py文件用于分割模型测试

在这里插入图片描述

2,右击运行(Ctrl + Shift + F10),报错

在这里插入图片描述
找了一下原因,show_seg.py用到了show3d_balls.py里面的showpoints函数
show3d_balls.py又用到了一个dll文件,dll = np.ctypeslib.load_library('render_balls_so', '.')而这个是.so不是.dll(原文是在Linux下跑的)
在这里插入图片描述
故需要转换一下,通过Visual Studio创建一个动态链接库(DLL)项目,生成render_balls_so.dll放到utils文件下即可
在这里插入图片描述
我这边就不搞了,抓紧时间学习下PointNet++
参考博客:https://blog.csdn.net/qq_45369294/article/details/121041403

3,直接拿来用

render_balls_so.dll免费下载
下载是一个压缩包,里面是一个完整的Visual Studio项目,但是用不到,咱们就用到了里面的一个dll文件
在这里插入图片描述

4,再次右击运行(Ctrl + Shift + F10),报错

在这里插入图片描述
还是之前遇到的问题,导入

import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"

和分类任务一样,进行简单配置即可
在这里插入图片描述

5,再次右击运行(Ctrl + Shift + F10),测试成功

对Airplane进行分割,效果展示
在这里插入图片描述

六、完结

目前只是实现了代码的跑通,后续还得认真学习原理以及去修改模型架构适配自己的工作任务。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/791106.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

硅纪元AI应用推荐 | 百度橙篇成新宠,能写万字长文

“硅纪元AI应用推荐”栏目&#xff0c;为您精选最新、最实用的人工智能应用&#xff0c;无论您是AI发烧友还是新手&#xff0c;都能在这里找到提升生活和工作的利器。与我们一起探索AI的无限可能&#xff0c;开启智慧新时代&#xff01; 百度橙篇&#xff0c;作为百度公司在202…

运算放大器(运放)输入失调电压

输入失调电压定义 理想状态下&#xff0c;如果运算放大器的两个输入端电压完全相同&#xff0c;输出应为0 V。实际上&#xff0c;还必须在输入端施加小差分电压&#xff0c;强制输出达到0。该电压称为输入失调电压VOS。输入失调电压可以看成是电压源VOS&#xff0c;与运算放大…

【排序 - 快速排序】

快速排序&#xff08;Quick Sort&#xff09;是一种高效的排序算法&#xff0c;它基于分治&#xff08;Divide and Conquer&#xff09;的策略。这种排序算法的核心思想是选择一个基准元素&#xff0c;将数组分割成两部分&#xff0c;使得左边的元素都小于等于基准元素&#xf…

实验-ENSP实现防火墙区域策略与用户管理

目录 实验拓扑 自己搭建拓扑 实验要求 实验步骤 整通总公司内网 sw3配置vlan 防火墙配置IP 配置安全策略&#xff08;DMZ区内的服务器&#xff0c;办公区仅能在办公时间内&#xff08;9: 00- 18:00)可以访问&#xff0c;生产区的设备全天可以访问&#xff09; 配置nat策…

(总结)编译ORB_SLAM2遇到的错误

目录 第一个错误error: ‘CV_BGR2GRAY’ was not declared in this scope 第二个错误error: ‘CV_GRAY2BGR’ was not declared in this scope 第三个错误是没有那个文件或目录 26 | #include 第四个错误是‘CV_LOAD_IMAGE_UNCHANGED’ was not declared in this scope 第…

Golang | Leetcode Golang题解之第228题汇总区间

题目&#xff1a; 题解&#xff1a; func summaryRanges(nums []int) (ans []string) {for i, n : 0, len(nums); i < n; {left : ifor i; i < n && nums[i-1]1 nums[i]; i {}s : strconv.Itoa(nums[left])if left < i-1 {s "->" strconv.It…

腾讯广告优量汇Android一面凉经(2024)

腾讯广告优量汇Android一面凉经(2024) 笔者作为一名双非二本毕业7年老Android, 最近面试了不少公司, 目前已告一段落, 整理一下各家的面试问题, 打算陆续发布出来, 供有缘人参考。今天给大家带来的是《腾讯广告优量汇Android一面凉经(2024)》。 面试职位: 腾讯广告优量汇-SDK客…

【算法】排序算法介绍 附带C#和Python实现代码

1. 冒泡排序(Bubble Sort) 2. 选择排序(Selection Sort) 3. 插入排序(Insertion Sort) 4. 归并排序(Merge Sort) 5. 快速排序(Quick Sort) 排序算法是计算机科学中的一个基础而重要的部分,用于将一组数据按照一定的顺序排列。下面介绍几种常见的排序算法,…

MVC分页

public ActionResult Index(int ? page){IPagedList<EF.ACCOUNT> userPagedList;using (EF.eMISENT content new EF.eMISENT()){第几页int pageNumber page ?? 1;每页数据条数&#xff0c;这个可以放在配置文件中int pageSize 10;//var infoslist.C660List.OrderBy(…

算法通关:004_1选择排序

代码一定要自己手敲理解 public class _004 {//选择排序&#xff0c;冒泡排序&#xff0c;插入排序//交换public static void swap(int[] arr,int i ,int j){int temp arr[i];arr[i] arr[j];arr[j] temp;}//选择排序public static void selectSort(int[] arr){if(arr null…

PDF 分割拆分 API 数据接口

PDF 分割拆分 API 数据接口 文件处理&#xff0c;PDF 高效的 PDF 分割工具&#xff0c;高效处理&#xff0c;可永久存储。 1. 产品功能 高效处理大文件&#xff1b;支持多语言字符识别&#xff1b;支持 formdata 格式 PDF 文件流传参&#xff1b;支持设置每个 PDF 文件的页数…

【PTA天梯赛】L1-005 考试座位号(15分)

作者&#xff1a;指针不指南吗 专栏&#xff1a;算法刷题 &#x1f43e;或许会很慢&#xff0c;但是不可以停下来&#x1f43e; 文章目录 题目题解try1 编译错误正确题解 总结 题目 题目链接 题解 try1 编译错误 #include<bits/stdc.h> using namespace std;typedef…

nginx正向代理、反向代理、负载均衡

nginx.conf nginx首要处理静态页面 反向代理 动态请求 全局模块 work processes 1; 设置成服务器内核数的两倍&#xff08;一般不不超过8个超过8个反而会降低性能一般4个 1-2个也可以&#xff09; netstat -antp | grep 80 查端口号 *1、events块&#xff1a;* 配置影响ngi…

微软Win11 24H2七月更新补丁KB5040435发布!附下载

系统之家于7月10日发出最新报道&#xff0c;微软为Win11用户发布了24H2版本七月的最新更新补丁KB5040435。用户升级系统后&#xff0c;会发现版本号升至 26100.1150。此次更新针对远程身份验证拨入用户服务(RADIUS)协议与 MD5冲突等问题进行修复。接下来跟随小编看看此次更新的…

利用【Python】【线性规划】优化工厂生产:实现智能资源配置与利润最大化的现代解决方案

目录 1. 问题背景和描述 1.1 问题背景 1.2 问题描述 2. 数学模型的建立 2.1决策变量 2.2 目标函数 2.3 约束条件 2.4 数学模型总结 3. 使用Python解决线性规划问题 3.1 导入必要的库 3.2 定义目标函数系数 3.3 定义不等式约束矩阵和向量 3.4 定义变量的边界 非负…

【Pytorch】RNN for Image Classification

文章目录 1 RNN 的定义2 RNN 输入 input, h_03 RNN 输出 output, h_n4 多层5 小试牛刀 学习参考来自 pytorch中nn.RNN()总结RNN for Image Classification(RNN图片分类–MNIST数据集)pytorch使用-nn.RNN 1 RNN 的定义 nn.RNN(input_size, hidden_size, num_layers1, nonlinea…

游戏视频是后期配音好还是边录边配 游戏视频怎么剪辑制作才能火 视频剪辑免费软件

游戏视频后期配音是先配还是先剪&#xff1f;游戏视频后期配音没有统一的准则&#xff0c;可以先配&#xff0c;也可以后配&#xff0c;主要是根据内容而定。游戏视频剪辑在游戏玩家中十分流行&#xff0c;那么&#xff0c;游戏视频怎么剪辑制作&#xff1f;下面让我们以具体的…

apache python使用

修改httpd.conf文件。 AddHandler cgi-script .cgi .py 代码 #!自己的python.exe #-*- coding:UTF-8 -*- print ("Content-type:text/html") print () print (<html>) print (<head>) print (<meta charset"gb2312">) print (<tit…

现在国内的ddos攻击趋势怎么样?想了解现在ddos的情况该去哪看?

目前&#xff0c;国内的DDoS攻击趋势显示出以下几个特征&#xff1a; 攻击频次显著增加&#xff1a;根据《快快网络2024年DDoS攻击趋势白皮书》&#xff0c;2023年DDoS攻击活动有显著攀升&#xff0c;总攻击次数达到1246.61万次&#xff0c;比前一年增长了18.1%。 攻击强度和规…

Spring Expression表达式使用

Spring Expression 简介 Spring Expression Language&#xff08;简称 “SpEL”&#xff09;是一种功能强大的表达式语言&#xff0c;支持在运行时查询和操作对象图。其中最显著的是&#xff1a;方法调用和基本的字符串模板功能。 虽然SpEL是Spring产品组合中表达式评估的基础…