MYSQL 四、mysql进阶 8(索引优化与查询优化)

都有哪些维度可以进行数据库调优?简言之:

  • 索引失效、没有充分利用到索引——建立索引
  • 关联查询太多JOIN(设计缺陷或不得已的需求)——SQL优化
  • 服务器调优及各个参数设置(缓冲、线程数等)——调整my.cnf
  • 数据过多——分库分表

关于数据库调优的知识非常分散。不同的DBMS,不同的公司,不同的职位,不同的项目遇到的问题都不尽相同。这里我们分为三个章节进行细致讲解。

虽然SQL查询优化的技术有很多,但是大方向上完全可以分成物理查询优化逻辑查询优化两大块。

  • 物理查询优化是通过索引表连接方式等技术来进行优化,这里重点需要掌握索引的使用。
  • 逻辑查询优化就是通过SQL等价变换提升查询效率,直白一点就是说,换一种查询写法效率可能更高。

一、数据准备

        学员表 50条, 班级表 1条。

CREATE DATABASE atguigudb2;
USE atguigudb2;
#步骤1:建表
CREATE TABLE `class` (
    `id` INT(11) NOT NULL AUTO_INCREMENT,
    `className` VARCHAR(30) DEFAULT NULL,
    `address` VARCHAR(40) DEFAULT NULL,
    `monitor` INT NULL ,
    PRIMARY KEY (`id`)
) ENGINE=INNODB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;

CREATE TABLE `student` (
    `id` INT(11) NOT NULL AUTO_INCREMENT,
    `stuno` INT NOT NULL ,
    `name` VARCHAR(20) DEFAULT NULL,
    `age` INT(3) DEFAULT NULL,
    `classId` INT(11) DEFAULT NULL,
    PRIMARY KEY (`id`)
    #CONSTRAINT `fk_class_id` FOREIGN KEY (`classId`) REFERENCES `t_class` (`id`)
) ENGINE=INNODB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;

 # 步骤2:设置参数

  • 命令开启:允许创建函数设置:
set global log_bin_trust_function_creators=1; # 不加global只是当前窗口有效。

步骤3:创建函数

保证每条数据都不同。

#随机产生字符串
DELIMITER //
CREATE FUNCTION rand_string(n INT) RETURNS VARCHAR(255)
BEGIN
DECLARE chars_str VARCHAR(100) DEFAULT
'abcdefghijklmnopqrstuvwxyzABCDEFJHIJKLMNOPQRSTUVWXYZ';
DECLARE return_str VARCHAR(255) DEFAULT '';
DECLARE i INT DEFAULT 0;
WHILE i < n DO
SET return_str =CONCAT(return_str,SUBSTRING(chars_str,FLOOR(1+RAND()*52),1));
SET i = i + 1;
END WHILE;
RETURN return_str;
END //
DELIMITER ;
#假如要删除
#drop function rand_string;

随机产生班级编号

#用于随机产生多少到多少的编号
DELIMITER //
CREATE FUNCTION rand_num (from_num INT ,to_num INT) RETURNS INT(11)
BEGIN
DECLARE i INT DEFAULT 0;
SET i = FLOOR(from_num +RAND()*(to_num - from_num+1)) ;
RETURN i;
END //
DELIMITER ;
#假如要删除
#drop function rand_num;

#步骤4:创建存储过程

#创建往stu表中插入数据的存储过程
DELIMITER //
CREATE PROCEDURE insert_stu( START INT , max_num INT )
BEGIN
DECLARE i INT DEFAULT 0;
SET autocommit = 0; #设置手动提交事务
REPEAT #循环
SET i = i + 1; #赋值
INSERT INTO student (stuno, name ,age ,classId ) VALUES
((START+i),rand_string(6),rand_num(1,50),rand_num(1,1000));
UNTIL i = max_num
END REPEAT;
COMMIT; #提交事务
END //
DELIMITER ;
#假如要删除
#drop PROCEDURE insert_stu;

创建往class表中插入数据的存储过程

#执行存储过程,往class表添加随机数据
DELIMITER //
CREATE PROCEDURE `insert_class`( max_num INT )
BEGIN
DECLARE i INT DEFAULT 0;
SET autocommit = 0;
REPEAT
SET i = i + 1;
INSERT INTO class ( classname,address,monitor ) VALUES
(rand_string(8),rand_string(10),rand_num(1,100000));
UNTIL i = max_num
END REPEAT;
COMMIT;
END //
DELIMITER ;
#假如要删除
#drop PROCEDURE insert_class;

步骤5:调用存储过程

class

#执行存储过程,往class表添加1万条数据
CALL insert_class(10000);

stu

#执行存储过程,往stu表添加50万条数据
CALL insert_stu(100000,500000);

步骤6:删除某表上的索引

创建存储过程

DELIMITER //
CREATE PROCEDURE `proc_drop_index`(dbname VARCHAR(200),tablename VARCHAR(200))
BEGIN
        DECLARE done INT DEFAULT 0;
        DECLARE ct INT DEFAULT 0;
        DECLARE _index VARCHAR(200) DEFAULT '';
        DECLARE _cur CURSOR FOR SELECT index_name FROM
information_schema.STATISTICS WHERE table_schema=dbname AND table_name=tablename AND
seq_in_index=1 AND index_name <>'PRIMARY' ;
#每个游标必须使用不同的declare continue handler for not found set done=1来控制游标的结束
		DECLARE CONTINUE HANDLER FOR NOT FOUND set done=2 ;
#若没有数据返回,程序继续,并将变量done设为2
        OPEN _cur;
        FETCH _cur INTO _index;
        WHILE _index<>'' DO
            SET @str = CONCAT("drop index " , _index , " on " , tablename );
            PREPARE sql_str FROM @str ;
            EXECUTE sql_str;
            DEALLOCATE PREPARE sql_str;
            SET _index='';
            FETCH _cur INTO _index;
        END WHILE;
    CLOSE _cur;
END //
DELIMITER ;

执行存储过程

CALL proc_drop_index("dbname","tablename");

 

二、索引失效案例:

        Mysql中提高性能的一个最有效的方式是对数据表设计合理的索引,索引提高了高校访问数据的方法,并且加快查询的速度,因此索引对查询的速度有着至关重要的影响。

  • 使用索引可以快速定位表中的某条记录,从而提高数据库查询的速度,提高数据库的性能。
  • 如果查询时没有使用索引,查询语句就会扫描表中的所有记录,在数据量打的情况下,这样查询的速度会很慢。

        大多数情况下都采用B+树来构建索引,只是空间列类型的索引使用R-树,并且MEMORY还支持hash索引。

        其实用不用索引,最终都是优化器说了算,优化器是基于 cost开销 ,他不是基于规则,也不是基于语义,怎么样开销小就怎么来,另外,sql语句是否使用索引,跟数据库版本,数据量,数据选择度都有关系。

        

        2.1 全值匹配我最爱

        系统中经常出现的sql语句如下:

EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age=30;
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age=30 AND classId=4;
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age=30 AND classId=4 AND name = 'abcd';

        建立索引前执行:(关注执行时间)

mysql> SELECT SQL_NO_CACHE * FROM student WHERE age=30 AND classId=4 AND name = 'abcd';
Empty set, 1 warning (0.28 sec)

        建立索引

CREATE INDEX idx_age ON student(age);
CREATE INDEX idx_age_classid ON student(age,classId);
CREATE INDEX idx_age_classid_name ON student(age,classId,name);

        建立索引后执行:

mysql> SELECT SQL_NO_CACHE * FROM student WHERE age=30 AND classId=4 AND name = 'abcd';
Empty set, 1 warning (0.01 sec)

        可以看到,创建索引前的查询时间时0.28s,创建索引后的查询时间是0.01s,索引帮助我们极大的提高了查询效率。

 

        2.2 最佳左前缀法则

        在MySQL建立联合索引时会遵守最佳左前缀原则,即最左优先,在检索数据时从联合索引的最左边开始匹配。

举例1:

EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.age=30 AND student.name = 'abcd';        

举例2:

EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.classId=1 AND student.name = 'abcd';

举例3:索引idx_age_classid_name还能否正常使用?

EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.classId=4 AND student.age=30 AND student.name = 'abcd';

 如果索引了多列,要遵守最左前缀法则。指的是查询从索引的最左前列开始并且不跳过索引中的列。

mysql> EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.age=30 AND student.name = 'abcd';

虽然可以正常使用,但是只有部分被使用到了。

mysql> EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.classId=1 AND student.name = 'abcd';
完全没有使用上索引。

结论:MySQL可以为多个字段创建索引,一个索引可以包含16个字段。对于多列索引,过滤条件要使用索引必须按照索引建立时的顺序,依次满足,一旦跳过某个字段,索引后面的字段都无法被使用。如果查询条件中没有用这些字段中第一个字段时,多列(或联合)索引不会被使用。
 

拓展:Alibaba《Java开发手册》

索引文件具有 B-Tree 的最左前缀匹配特性,如果左边的值未确定,那么无法使用此索引。

        2.3 主键插入顺序

        对于一个使用InnoDB存储引擎的表来说,在我们没有显式的创建索引时,表中的数据实际上都是存储在聚簇索引的子节点的,而记录又是存储在数据页中的,数据页和记录又是按照记录 主键值从小到大的顺序进行排序,所以如果我们插入的记录的主键值是以此增大的话,那我们每插满一个数据页就换到下一个数据页继续插,而如果我们插入的主键值忽大忽小的话,就比较麻烦了,假设某个数据页存储的记录已经满了,他存储的主键值在1-100之间。

        

        如果此时再插入一条主键值为 9 的记录,那它插入的位置就如下图:
        
        可这个数据页已经满了,再插进来咋办呢?我们需要把当前 页面分裂 成两个页面,把本页中的一些记录移动到新创建的这个页中。页面分裂和记录移位意味着什么?意味着: 性能损耗 !所以如果我们想尽量避免这样无谓的性能损耗,最好让插入的记录的 主键值依次递增 ,这样就不会发生这样的性能损耗了。 所以我们建议:让主键具有 AUTO_INCREMENT ,让存储引擎自己为表生成主键,而不是我们手动插入 , 比如: person_info 表:

        

CREATE TABLE person_info(
    id INT UNSIGNED NOT NULL AUTO_INCREMENT,
    name VARCHAR(100) NOT NULL,
    birthday DATE NOT NULL,
    phone_number CHAR(11) NOT NULL,
    country varchar(100) NOT NULL,
    PRIMARY KEY (id),
    KEY idx_name_birthday_phone_number (name(10), birthday, phone_number)
);

        我们自定义的主键列 id 拥有 AUTO_INCREMENT 属性,在插入记录时存储引擎会自动为我们填入自增的主键值。这样的主键占用空间小,顺序写入,减少页分裂。        

        2.4 计算、函数、类型转换(自动或手动)导致索引失效

 1.这两条sql哪种写法更好

EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.name LIKE 'abc%';
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE LEFT(student.name,3) = 'abc';

 2.创建索引

CREATE INDEX idx_name ON student(NAME);

 3.第一种:索引优化生效

 mysql> EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.name LIKE 'abc%';  mysql> SELECT SQL_NO_CACHE * FROM student WHERE student.name LIKE 'abc%';
+---------+---------+--------+------+---------+
| id | stuno | name | age | classId |
+---------+---------+--------+------+---------+
| 5301379 | 1233401 | AbCHEa | 164 | 259 |
| 7170042 | 3102064 | ABcHeB | 199 | 161 |
| 1901614 | 1833636 | ABcHeC | 226 | 275 |
| 5195021 | 1127043 | abchEC | 486 | 72 |
| 4047089 | 3810031 | AbCHFd | 268 | 210 |
| 4917074 | 849096 | ABcHfD | 264 | 442 |
| 1540859 | 141979 | abchFF | 119 | 140 |
| 5121801 | 1053823 | AbCHFg | 412 | 327 |
| 2441254 | 2373276 | abchFJ | 170 | 362 |
| 7039146 | 2971168 | ABcHgI | 502 | 465 |
| 1636826 | 1580286 | ABcHgK | 71 | 262 |
| 374344 | 474345 | abchHL | 367 | 212 |
| 1596534 | 169191 | AbCHHl | 102 | 146 |
...
| 5266837 | 1198859 | abclXe | 292 | 298 |
| 8126968 | 4058990 | aBClxE | 316 | 150 |
| 4298305 | 399962 | AbCLXF | 72 | 423 |
| 5813628 | 1745650 | aBClxF | 356 | 323 |
| 6980448 | 2912470 | AbCLXF | 107 | 78 |
| 7881979 | 3814001 | AbCLXF | 89 | 497 |
| 4955576 | 887598 | ABcLxg | 121 | 385 |
| 3653460 | 3585482 | AbCLXJ | 130 | 174 |
| 1231990 | 1283439 | AbCLYH | 189 | 429 |
| 6110615 | 2042637 | ABcLyh | 157 | 40 |
+---------+---------+--------+------+---------+
401 rows in set, 1 warning (0.01 sec)

 4.第二种:索引优化失效

mysql> EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE LEFT(student.name,3) = 'abc';
mysql> SELECT SQL_NO_CACHE * FROM student WHERE LEFT(student.name,3) = 'abc';
+---------+---------+--------+------+---------+
| id | stuno | name | age | classId |
+---------+---------+--------+------+---------+
| 5301379 | 1233401 | AbCHEa | 164 | 259 |
| 7170042 | 3102064 | ABcHeB | 199 | 161 |
| 1901614 | 1833636 | ABcHeC | 226 | 275 |
| 5195021 | 1127043 | abchEC | 486 | 72 |
| 4047089 | 3810031 | AbCHFd | 268 | 210 |
| 4917074 | 849096 | ABcHfD | 264 | 442 |
| 1540859 | 141979 | abchFF | 119 | 140 |
| 5121801 | 1053823 | AbCHFg | 412 | 327 |
| 2441254 | 2373276 | abchFJ | 170 | 362 |
| 7039146 | 2971168 | ABcHgI | 502 | 465 |
| 1636826 | 1580286 | ABcHgK | 71 | 262 |
| 374344 | 474345 | abchHL | 367 | 212 |
| 1596534 | 169191 | AbCHHl | 102 | 146 |
...
| 5266837 | 1198859 | abclXe | 292 | 298 |
| 8126968 | 4058990 | aBClxE | 316 | 150 |
| 4298305 | 399962 | AbCLXF | 72 | 423 |
| 5813628 | 1745650 | aBClxF | 356 | 323 |
| 6980448 | 2912470 | AbCLXF | 107 | 78 |
| 7881979 | 3814001 | AbCLXF | 89 | 497 |
| 4955576 | 887598 | ABcLxg | 121 | 385 |
| 3653460 | 3585482 | AbCLXJ | 130 | 174 |
| 1231990 | 1283439 | AbCLYH | 189 | 429 |
| 6110615 | 2042637 | ABcLyh | 157 | 40 |
+---------+---------+--------+------+---------+
401 rows in set, 1 warning (3.62 sec)

type为“ALL”,表示没有使用到索引,查询时间为 3.62 秒,查询效率较之前低很多。

再举例:

  • student表的字段stuno上设置有索引

    CREATE INDEX idx_sno ON student(stuno);
  • 索引优化失效:(假设:student表的字段stuno上设置有索引)

    EXPLAIN SELECT SQL_NO_CACHE id, stuno, NAME FROM student WHERE stuno+1 = 900001;

 运行结果:

  • 索引优化生效:

    EXPLAIN SELECT SQL_NO_CACHE id, stuno, NAME FROM student WHERE stuno = 900000;

再举例:

  • student表的字段name上设置有索引

    CREATE INDEX idx_name ON student(NAME);
    EXPLAIN SELECT id, stuno, name FROM student WHERE SUBSTRING(name, 1,3)='abc';
    
  • 索引优化生效

    EXPLAIN SELECT id, stuno, NAME FROM student WHERE NAME LIKE 'abc%';

    image-20220704215600507

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/790797.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【C++】C++11(三)

我们在C11&#xff08;2&#xff09;中已经很好的解释了右值引用&#xff0c;这次来看看右值引用剩余的一些话题&#xff1a;可变参数包与emplace_back。 目录 可变参数模板&#xff1a;可变参数的sizeof&#xff1a;可变参数的展开&#xff1a;递归函数方式展开参数包&#x…

通过Arcgis从逐月平均气温数据中提取并计算年平均气温

通过Arcgis快速将逐月平均气温数据生成年平均气温数据。本次用2020年逐月平均气温数据操作说明。 一、准备工作 &#xff08;1&#xff09;准备Arcmap桌面软件&#xff1b; &#xff08;2&#xff09;准备2020年逐月平均气温数据&#xff08;NC格式&#xff09;、范围图层数据&…

k8s 部署RuoYi-Vue-Plus之server部署

1.先使用项目编排构建镜像, 修改prod使用的mysql, redis地址 获取运行的服务 kubectl get svc -n ruoyi对应连接修改 然后运行打包package命令, 生成jar包, 再打包为docker容器, 上传到所有节点上, 也可以上传到个人私有仓库 2.部署server-deploy.yaml 镜像名自行修改, apiV…

你知道的和你不知道的DOM操作技巧

你知道的和你不知道的DOM操作技巧 亲爱的前端小伙伴们&#xff0c;今天我们来聊聊那些你可能知道或者不知道的DOM操作技巧。作为一名前端开发者&#xff0c;如果你还在为DOM操作头疼&#xff0c;那么这篇文章绝对能让你茅塞顿开。让我们一起来探索一下DOM的奥秘吧&#xff01;…

【开源合规】开源许可证风险场景详细解读

文章目录 前言关于BlackDuck许可证风险对比图弱互惠型许可证举个例子具体示例LGPL系列LGPL-2.0-onlyLGPL-2.0-or-laterLGPL-2.1-onlyLGPL-2.1-or-laterLGPL-3.0-onlyLGPL-3.0-or-laterMPL系列MPL-1.0MPL-1.1MPL-2.0EPL系列EPL-1.0EPL-2.0互惠型许可证GPL系列GPL-1.0GPL-2.0GPL-…

Mac系统清理工具:您的数字生活杂务处理师

有没有觉得您的Mac有时候像是需要一个好的春季大扫除一样&#xff1f;随着我们不断使用电脑&#xff0c;各种不需要的文件、老旧的数据和忘记的安装包就像家里的灰尘一样慢慢积累。幸运的是&#xff0c;有了一些出色的Mac系统清理工具&#xff0c;我们可以轻松将这些数字灰尘拂…

Java中实现二维数组(矩阵)的转置

在矩阵运算中&#xff0c;矩阵的转置是一个基本操作&#xff0c;即将矩阵的行变成列&#xff0c;列变成行。在Java中&#xff0c;我们可以通过编写一个方法来实现二维数组的转置。下面&#xff0c;我将详细介绍如何在Java中完成这一任务&#xff0c;并提供完整的代码示例。 编…

【Linux】命令执行的判断依据:;,,||

在某些情况下&#xff0c;很多命令我想要一次输入去执行&#xff0c;而不想要分次执行时&#xff0c;该如何是好&#xff1f; 基本上有两个选择&#xff0c; 一个是通过shell脚本脚本去执行&#xff0c;一种则是通过下面的介绍来一次入多个命令。 1.cmd&#xff1a;cmd&#…

AR增强现实汽车装配仿真培训系统开发降低投入费用

随着互联网的无处不在&#xff0c;AR增强现实技术正逐步融入我们生活的每一个角落。深圳华锐视点作为一家引领行业潮流的AR内容开发的技术型公司&#xff0c;正以其卓越的技术实力和专业的服务团队&#xff0c;推动着国内AR技术向更加成熟和多元化的方向迈进。 深圳华锐视点提供…

成都晨持绪:抖音电商带货需要交钱吗

在抖音这个充满创意与可能的平台上&#xff0c;电商带货成为了一种新兴而又时尚的职业。然而&#xff0c;伴随着无数的点击与转发&#xff0c;有一个问题始终萦绕在人们心头——抖音电商带货需要交钱吗? 如画卷展开&#xff0c;抖音平台以其独特的算法和庞大的用户基础构建了一…

GDidees CMS v3.9.1 本地文件泄露漏洞(CVE-2023-27179)

前言 CVE-2023-27179 是一个影响 GDidees CMS v3.9.1 及更低版本的任意文件下载漏洞。这个漏洞存在于 /_admin/imgdownload.php 文件中&#xff0c;攻击者可以通过向 filename 参数传递恶意输入来下载服务器上的任意文件。 漏洞的根源在于对用户输入的 filename 参数处理不当…

前后端如何实现非对称加解密-使用RSA为例讲解!

写在最前面&#xff0c;RSA是一种非对称加密算法&#xff0c;使用不同的公钥和私钥进行加密和解密。 下面是使用RSA进行加密和解密的代码示例&#xff1a; 前端&#xff1a;使用CryptoJS进行RSA加密 在前端JavaScript中&#xff0c;使用jsencrypt库来进行RSA加密&#xff1a…

网络安全----防御----防火墙安全策略组网

防火墙组网 要求&#xff1a; 1&#xff0c;DMz区内的服务器&#xff0c;办公区仅能在办公时间内(9:00-18:00)可以访问&#xff0c;生产区的设备全天可以访问。 2&#xff0c;生产区不允许访问互联网&#xff0c;办公区和游客区允许访问互联网 3&#xff0c;办公区设备10.0.…

【AI前沿】深度学习:技术、发展与前沿应用

文章目录 一、深度学习的背景与发展1.1 背景1.2 早期发展1.3 突破性进展1.4 近年发展 二、深度学习的基本概念2.1 神经网络2.2 多层感知器&#xff08;MLP&#xff09;2.3 卷积神经网络&#xff08;CNN&#xff09;2.4 循环神经网络&#xff08;RNN&#xff09;2.5 生成对抗网络…

【C++修行之道】string类练习题

目录 387. 字符串中的第一个唯一字符 125. 验证回文串 917. 仅仅反转字母 415. 字符串相加&#xff08;重点&#xff09; 541. 反转字符串 II 387. 字符串中的第一个唯一字符 字符串中的第一个唯一字符 - 力扣&#xff08;LeetCode&#xff09; 给定一个字符串 s &#…

【Windows】实现窗口子类化(基于远程线程注入)

目录 前言 原理解释 完整项目 相关文献 文章出处链接&#xff1a;[https://blog.csdn.net/qq_59075481/article/details/140334106] 前言 众所周知&#xff0c;DLL 注入有多种用途&#xff0c;如热修补、日志记录、子类化等。本文重点介绍使用 DLL 注入对窗口进行子类化。…

路径规划之基于二次规划的路径平滑Matlab代码

参考&#xff1a; 自动驾驶决策规划算法第二章第二节(上) 参考线模块_哔哩哔哩_bilibili 自动驾驶决策规划算法第二章第二节(下) 参考线代码实践_哔哩哔哩_bilibili QP函数&#xff0c;二次规划的逻辑 function [smooth_path_x,smooth_path_y] QP(path_x, path_y, w_cost_s…

Java方法入门(006)

♦️方法的概念 什么是方法&#xff1f; 方法是将一组完成特定功能的代码整合在一起&#xff0c;以达到简化开发&#xff0c;减少代码耦合&#xff0c;提高代码复用性的结构&#xff0c;类似与C语言中的函数。方法是程序中最小的执行单元&#xff0c;可降低代码的重复性。 如用…

Python 100道基础入门练习题!附解析

看书&#xff0c;看视频都可以帮助你学习代码&#xff0c;但都只是辅助作用&#xff0c;学好 Python&#xff0c;最重要的还是 多敲代码&#xff0c;多刷题。 不知道怎么找题刷题的小伙伴&#xff0c;可以看看这里今天带来了100道练习题。覆盖了基本语法&#xff0c;数据结构&…

【Docker-compose】搭建php 环境

文章目录 Docker-compose容器编排1. 是什么2. 能干嘛3. 去哪下4. Compose 核心概念5. 实战 &#xff1a;linux 配置dns 服务器&#xff0c;搭建lemp环境&#xff08;Nginx MySQL (MariaDB) PHP &#xff09;要求6. 配置dns解析配置 lemp Docker-compose容器编排 1. 是什么 …