文章目录
- 昇思MindSpore应用实践
- 1、基于 MindSpore 实现 BERT 对话情绪识别
- BERT 模型简介
- 数据集
- 数据加载和数据预处理
- 2、模型训练
- 模型验证
- 3、模型推理
- Reference
昇思MindSpore应用实践
本系列文章主要用于记录昇思25天学习打卡营的学习心得。
1、基于 MindSpore 实现 BERT 对话情绪识别
BERT 模型简介
自2017年Google发表"Attention is ALL You Need"之后,基于自注意力机制结构的网络模型开始在各领域发展,特别是Transformer网络,针对序列的强大长距离关联处理能力在NLP领域取得了成效,BERT 的创新点在于它将双向 Transformer 用于语言模型,曾一度刷新各项NLP任务的SOTA记录,包括问答 Question Answering (SQuAD v1.1),推理 Natural Language Inference (MNLI) 等,也由此拉开了LLM的序幕。
在此之前,以往的NLP模型,如RNN网络,通常是从左向右输入一个文本序列,或者将 left-to-right 和 right-to-left 的训练结合起来(如Bi-LSTM)。实验结果表明,双向训练的语言模型对语境的理解会比单向的语言模型更深刻,
BERT 利用了 Transformer 的 Encoder 部分。Transformer 基于自注意力机制可以学习文本中单词之间的上下文关系。Transformer 的原型包括两个独立的机制,一个 Encoder 负责接收文本作为输入,一个 Decoder 负责预测任务的结果。BERT 的目标是生成语言模型,所以只需要 Encoder 机制。
Transformer 的 encoder 是一次性读取整个文本序列,而不是从左到右或从右到左地按顺序读取,这个特征使得模型能够基于单词的两侧学习,相当于是一个双向的功能。
下图是 Transformer 的 encoder 部分,输入是一个 token 序列,先对其进行 embedding 称为向量,然后输入给神经网络,输出是大小为 H 的向量序列,每个向量对应着具有相同索引的 token。
BERT模型的主要创新点都在pre-train方法上,即用了Masked Language Model
和Next Sentence Prediction
两种方法分别捕捉词语和句子级别的representation。
在用Masked Language Model方法训练BERT的时候,随机把语料库中15%的单词做Mask操作。对于这15%的单词做Mask操作分为三种情况:80%的单词直接用[Mask]替换、10%的单词直接替换成另一个新的单词、10%的单词保持不变。
因为涉及到Question Answering (QA) 和 Natural Language Inference (NLI)之类的任务,增加了Next Sentence Prediction预训练任务,目的是让模型理解两个句子之间的联系。与Masked Language Model任务相比,Next Sentence Prediction
更简单些,训练的输入是句子A和B,B有一半的几率是A的下一句,输入这两个句子,BERT模型预测B是不是A的下一句。
BERT预训练之后,会保存它的Embedding table和12层Transformer权重(BERT-BASE)或24层Transformer权重(BERT-LARGE)。使用预训练好的BERT模型可以对下游任务进行Fine-tuning,比如:文本分类、相似度判断、阅读理解等。
对话情绪识别(Emotion Detection,简称EmoTect),专注于识别智能对话场景中用户的情绪,针对智能对话场景中的用户文本,自动判断该文本的情绪类别并给出相应的置信度,情绪类型分为积极、消极、中性。 对话情绪识别适用于聊天、客服等多个场景,能够帮助企业更好地把握对话质量、改善产品的用户交互体验,也能分析客服服务质量、降低人工质检成本。
下面以MindSpore给出的一个文本情感分类任务为例子来说明BERT模型的整个应用过程:
import os
import mindspore
from mindspore.dataset import text, GeneratorDataset, transforms
from mindspore import nn, context
from mindnlp._legacy.engine import Trainer, Evaluator
from mindnlp._legacy.engine.callbacks import CheckpointCallback, BestModelCallback
from mindnlp._legacy.metrics import Accuracy
# prepare dataset
class SentimentDataset:
"""Sentiment Dataset"""
def __init__(self, path):
self.path = path
self._labels, self._text_a = [], []
self._load()
def _load(self):
with open(self.path, "r", encoding="utf-8") as f:
dataset = f.read()
lines = dataset.split("\n")
for line in lines[1:-1]:
label, text_a = line.split("\t")
self._labels.append(int(label))
self._text_a.append(text_a)
def __getitem__(self, index):
return self._labels[index], self._text_a[index]
def __len__(self):
return len(self._labels)
数据集
这里提供一份已标注的、经过分词预处理的机器人聊天数据集,来自于百度飞桨团队。数据由两列组成,以制表符(‘\t’)分隔,第一列是情绪分类的类别(0表示消极;1表示中性;2表示积极),第二列是以空格分词的中文文本,如下示例,文件为 utf8 编码。
label–text_a
0–谁骂人了?我从来不骂人,我骂的都不是人,你是人吗 ?
1–我有事等会儿就回来和你聊
2–我见到你很高兴谢谢你帮我
这部分主要包括数据集读取,数据格式转换,数据 Tokenize 处理和 pad 操作。
数据加载和数据预处理
新建 process_dataset 函数用于数据加载和数据预处理:
import numpy as np
def process_dataset(source, tokenizer, max_seq_len=64, batch_size=32, shuffle=True):
is_ascend = mindspore.get_context('device_target') == 'Ascend'
column_names = ["label", "text_a"]
dataset = GeneratorDataset(source, column_names=column_names, shuffle=shuffle)
# transforms
type_cast_op = transforms.TypeCast(mindspore.int32)
def tokenize_and_pad(text):
if is_ascend:
tokenized = tokenizer(text, padding='max_length', truncation=True, max_length=max_seq_len)
else:
tokenized = tokenizer(text)
return tokenized['input_ids'], tokenized['attention_mask']
# map dataset
dataset = dataset.map(operations=tokenize_and_pad, input_columns="text_a", output_columns=['input_ids', 'attention_mask'])
dataset = dataset.map(operations=[type_cast_op], input_columns="label", output_columns='labels')
# batch dataset
if is_ascend:
dataset = dataset.batch(batch_size)
else:
dataset = dataset.padded_batch(batch_size, pad_info={'input_ids': (None, tokenizer.pad_token_id),
'attention_mask': (None, 0)})
return dataset
昇腾NPU环境下暂不支持动态Shape,数据预处理部分采用静态Shape处理:
from mindnlp.transformers import BertTokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
tokenizer.pad_token_id
dataset_train = process_dataset(SentimentDataset("data/train.tsv"), tokenizer)
dataset_val = process_dataset(SentimentDataset("data/dev.tsv"), tokenizer)
dataset_test = process_dataset(SentimentDataset("data/test.tsv"), tokenizer, shuffle=False)
dataset_train.get_col_names()
[‘input_ids’, ‘attention_mask’, ‘labels’]
print(next(dataset_train.create_tuple_iterator()))
[Tensor(shape=[32, 64], dtype=Int64, value=
[[ 101, 6443, 3221 … 0, 0, 0],
[ 101, 872, 1963 … 0, 0, 0],
[ 101, 6929, 872 … 0, 0, 0],
…
[ 101, 872, 4268 … 0, 0, 0],
[ 101, 671, 4991 … 0, 0, 0],
[ 101, 1376, 1480 … 0, 0, 0]]), Tensor(shape=[32, 64], dtype=Int64, value=
[[1, 1, 1 … 0, 0, 0],
[1, 1, 1 … 0, 0, 0],
[1, 1, 1 … 0, 0, 0],
…
[1, 1, 1 … 0, 0, 0],
[1, 1, 1 … 0, 0, 0],
[1, 1, 1 … 0, 0, 0]]), Tensor(shape=[32], dtype=Int32, value= [1, 1, 1, 1, 1, 1, 1, 2, 2, 0, 2, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1,
1, 1, 2, 1, 1, 1, 1, 1])]
2、模型训练
通过 BertForSequenceClassification 构建用于情感分类的 BERT 模型,加载预训练权重,设置情感三分类的超参数自动构建模型。后面对模型采用自动混合精度操作,提高训练的速度,然后实例化优化器,紧接着实例化评价指标,设置模型训练的权重保存策略,最后就是构建训练器,模型开始训练。
from mindnlp.transformers import BertForSequenceClassification, BertModel
from mindnlp._legacy.amp import auto_mixed_precision
# set bert config and define parameters for training
model = BertForSequenceClassification.from_pretrained('bert-base-chinese', num_labels=3)
model = auto_mixed_precision(model, 'O1')
optimizer = nn.Adam(model.trainable_params(), learning_rate=2e-5)
metric = Accuracy()
# define callbacks to save checkpoints
ckpoint_cb = CheckpointCallback(save_path='checkpoint', ckpt_name='bert_emotect', epochs=1, keep_checkpoint_max=2)
best_model_cb = BestModelCallback(save_path='checkpoint', ckpt_name='bert_emotect_best', auto_load=True)
trainer = Trainer(network=model, train_dataset=dataset_train,
eval_dataset=dataset_val, metrics=metric,
epochs=5, optimizer=optimizer, callbacks=[ckpoint_cb, best_model_cb])
# start training
trainer.run(tgt_columns="labels")
模型验证
将验证数据集加再进训练好的模型,对数据集进行验证,查看模型在验证数据上面的效果,此处的评价指标为准确率。
evaluator = Evaluator(network=model, eval_dataset=dataset_test, metrics=metric)
evaluator.run(tgt_columns="labels")
% print_log:
Evaluate Score: {'Accuracy': 0.9083011583011583}
3、模型推理
遍历推理数据集,将结果与标签进行统一展示。
dataset_infer = SentimentDataset("data/infer.tsv")
def predict(text, label=None):
label_map = {0: "消极", 1: "中性", 2: "积极"}
text_tokenized = Tensor([tokenizer(text).input_ids])
logits = model(text_tokenized)
predict_label = logits[0].asnumpy().argmax()
info = f"inputs: '{text}', predict: '{label_map[predict_label]}'"
if label is not None:
info += f" , label: '{label_map[label]}'"
print(info)
from mindspore import Tensor
for label, text in dataset_infer:
predict(text, label)
# print_log:
inputs: '我 要 客观', predict: '中性' , label: '中性'
inputs: '靠 你 真是 说 废话 吗', predict: '消极' , label: '消极'
inputs: '口嗅 会', predict: '中性' , label: '中性'
inputs: '每次 是 表妹 带 窝 飞 因为 窝路痴', predict: '中性' , label: '中性'
inputs: '别说 废话 我 问 你 个 问题', predict: '消极' , label: '消极'
inputs: '4967 是 新加坡 那 家 银行', predict: '中性' , label: '中性'
inputs: '是 我 喜欢 兔子', predict: '积极' , label: '积极'
inputs: '你 写 过 黄山 奇石 吗', predict: '中性' , label: '中性'
inputs: '一个一个 慢慢来', predict: '中性' , label: '中性'
inputs: '我 玩 过 这个 一点 都 不 好玩', predict: '消极' , label: '消极'
inputs: '网上 开发 女孩 的 QQ', predict: '中性' , label: '中性'
inputs: '背 你 猜 对 了', predict: '中性' , label: '中性'
inputs: '我 讨厌 你 , 哼哼 哼 。 。', predict: '消极' , label: '消极'
Reference
昇思大模型平台
不会停的蜗牛-5 分钟入门 Google 最强NLP模型:BERT