在深度学习中,梯度消失是指在反向传播过程中,随着网络层数增加或者在使用特定类型的激活函数(如sigmoid函数)时,梯度逐渐变小并最终趋近于零的现象。这种现象导致在更新参数时,底层网络的权重几乎不会得到有效的更新,从而使得网络在学习过程中变得非常缓慢甚至停滞不前。
以Sigmoid函数为例 ,说明梯度消失问题
Sigmoid函数的导数计算如下:
现在来看Sigmoid函数的导数在什么情况下会导致梯度消失问题:
-
导数范围:
- 对于Sigmoid函数,当输入x较大或较小时,Sigmoid函数的值接近于0或1,此时导数的乘积值范围是[ 0, 0.25 ]。这意味着,无论输入是正是负,导数的最大值都不会超过0.25。
-
反向传播中的梯度传递:
- 在一个深层的神经网络中,反向传播会通过链式法则将梯度传递回到每一层的权重。每一层的梯度都是上一层梯度和当前层激活函数导数的乘积。
-
梯度乘积效应:
- 当网络很深时,梯度会经过多个层级的乘积。由于Sigmoid函数导数的范围是[ 0, 0.25 ],这意味着每传递一层,梯度都会缩小为原来的四分之一左右。因此,随着层数的增加,梯度可能会非常快地趋近于零,尤其是在网络的初始层。
-
梯度消失影响:
- 当梯度趋近于零时,网络的底层参数几乎不会得到有效的更新,导致这些层学习到的特征变得不稳定甚至停滞不前。这会影响整个网络的训练效果,尤其是对于较深的神经网络。
因此,Sigmoid函数的导数范围较小,以及其特性使得在深层网络中容易出现梯度消失问题。为了解决这个问题,ReLU及其变种成为了更好的选择,因为它们在大多数情况下能够避免梯度消失,从而加速神经网络的训练。