Tensorflow之损失函数与交叉熵

损失函数:预测值与已知答案之间的差距

NN优化目标:loss最小{mse, 自定义, ce)

均方误差tensorflow实现,loss_mse = tf.reduce_mean(tf.sqrue(y_-y)

预测酸奶日销量,y,x1, x2是影响日销量的因素

建模前,应预先采集每日x1,x2,和效率y

拟造数据集x,y:y_=x1 + x2 ,噪声 -0.05-+0.05

import tensorflow as tf
import numpy as np

SEED = 2345

rdm = np.random.RandomState()
x = rdm.rand(32,2) # 生成32行两列之间的数字
y_ = [[x1 + x2 + (rdm.rand()/10.0 - 0.05)] for (x1, x2) in x] #0.1-0.05=0.005
x = tf.cast(x, dtype=tf.float32)
# 随机初始化w1(2,1)
w1 = tf.Variable(tf.random.normal([2, 1], stddev = 1, seed = 1))
epoch = 15000
lr = 0.002

for epoch in range(epoch):
    with tf.GradientTape() as tape:
        y = tf.matmul(x, w1)
        loss_mse = tf.reduce_mean(tf.square(y_ - y))
    grads = tape.gradient(loss_mse, w1)
    w1.assign_sub(lr * grads) #更新参数

使用均方误差,预测多和预测少是一样的

预测多了,损失成本,预测少了,损失利润,利润不等于成本

自定义损失函数 loss(y_, y) = \sum{n} f(y_, y)

import tensorflow as tf
import numpy as np

SEED = 23455
COST = 1
PROFIT = 99

rdm = np.random.RandomState(SEED)
x = rdm.rand(32, 2)
y_ = [[x1 + x2 + (rdm.rand() / 10.0 - 0.05)] for (x1, x2) in x]  # 生成噪声[0,1)/10=[0,0.1); [0,0.1)-0.05=[-0.05,0.05)
x = tf.cast(x, dtype=tf.float32)

w1 = tf.Variable(tf.random.normal([2, 1], stddev=1, seed=1))

epoch = 10000
lr = 0.002

for epoch in range(epoch):
    with tf.GradientTape() as tape:
        y = tf.matmul(x, w1)
        loss = tf.reduce_sum(tf.where(tf.greater(y, y_), (y - y_) * COST, (y_ - y) * PROFIT))

    grads = tape.gradient(loss, w1)
    w1.assign_sub(lr * grads)

    if epoch % 500 == 0:
        print("After %d training steps,w1 is " % (epoch))
        print(w1.numpy(), "\n")
print("Final w1 is: ", w1.numpy())

# 自定义损失函数
# 酸奶成本1元, 酸奶利润99元
# 成本很低,利润很高,人们希望多预测些,生成模型系数大于1,往多了预测

 交叉熵

交叉熵可以表示两个概率分布之间的距离

例如 二分类,已知答案y_(1, 0) 预测 y1(0.6, 0.4), y2=(0.8, 0.2),  那个答案接近标准答案

代码实现, tf.losses.categorical_crossentropy(y_,y)

import tensorflow as tf

loss_ce1 = tf.losses.categorical_crossentropy([1, 0], [0.6, 0.4])
loss_ce2 = tf.losses.categorical_crossentropy([1, 0], [0.8, 0.2])
print("loss_ce1:", loss_ce1)
print("loss_ce2:", loss_ce2)

sotfmax与交叉熵结合

tf.nn.sotfmax_cross_entropy_with_logits(y_, y)

例子:

# softmax与交叉熵损失函数的结合
import tensorflow as tf
import numpy as np

y_ = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 0, 0], [0, 1, 0]])
y = np.array([[12, 3, 2], [3, 10, 1], [1, 2, 5], [4, 6.5, 1.2], [3, 6, 1]])
y_pro = tf.nn.softmax(y)
loss_ce1 = tf.losses.categorical_crossentropy(y_,y_pro)
loss_ce2 = tf.nn.softmax_cross_entropy_with_logits(y_, y)

print('分步计算的结果:\n', loss_ce1)
print('结合计算的结果:\n', loss_ce2)


# 输出的结果相同

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/788306.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

掌握三菱Q系列QD75运动控制模块

跟着资深三菱电气工程师严老师,一起来学习如何使用三菱QD75系列定位模块来完成各种运动控制需求,本课程专门讲解这个三菱QD75定位模块,如果你不知道如何使用QD75模块或者说对QD75模块背后的理论和使用方法不是很熟悉的话,一定要来…

数据高效交互丨DolphinDB Redis 插件使用指南

DolphinDB 是一个高性能的分布式数据库。通过 Redis 插件,DolphinDB 用户可以轻松地与 Redis 数据库进行交互。用户不仅可以从 DolphinDB 向 Redis 发送数据,实现高速的数据写入操作;还可以从 Redis 读取数据,将实时数据流集成到 …

android13 设置左右分屏修改为单屏幕,应用分屏改为单屏

1.前言 android13中,系统设置变成,左边是一级菜单,右侧是二级菜单, 这样跟我们以前android7/8/9的布局是不一样的,我们需要将它修改为一级菜单,点进去才是二级菜单这种。 效果如下 2.系统设置实现分析 它这里使用的是google新出的embedding activity, 相关的知识这里…

【福利】代码公开!咸鱼之王自动答题脚本

转载请注明出处:小锋学长生活大爆炸[xfxuezhagn.cn] 如果本文帮助到了你,欢迎[点赞、收藏、关注]哦~ 微信或QQ打开咸鱼之王小程序,进入答题界面,运行main.py。期间不要动鼠标。 可自行更改代码来适配自己的需求~ 可以按照示例图片…

欧拉部署nginx

1.下载nginx 下载地址:https://nginx.org/en/download.html 选择稳定版本 下的镜像文件进行下载 2.解压Nginx包 cd /root/nginx tar -zxvf nginx-1.26.0.tar.gz cd nginx-1.26.03.安装nginx相关依赖 yum -y install gcc zlib zlib-devel pcre-devel openssl o…

数据结构(初阶2.顺序表)

文章目录 一、线性表 二、顺序表 2.1 概念和结构 2.2 分类 2.2.1 静态顺序表 2.2.2 动态顺序表 2.3动态顺序表的实现 1.SeqList.h 2.SeqList.c 打印顺序表 初始化 销毁 增容 尾插 头插 在指定位置之前插入数据 尾删 头删 在指定位置删除数据 3.test.c 一、线性表 线性表&#…

浏览器中js外挂脚本的执行方式

1、开发工具控制台交互执行 网页中按F12打开开发者工具,选择“控制台”,键入js脚本命令回车执行,适用于临时使用脚本逻辑简单的场景,实例如下: // 获取网页元素的文本脚本 var elem document.getElementById("…

开发个人Go-ChatGPT–6 OpenUI

开发个人Go-ChatGPT–6 OpenUI Open-webui Open WebUI 是一种可扩展、功能丰富且用户友好的自托管 WebUI,旨在完全离线运行。它支持各种 LLM 运行器,包括 Ollama 和 OpenAI 兼容的 API。 功能 由于总所周知的原由,OpenAI 的接口需要密钥才…

Zabbix Sia Zabbix 逻辑漏洞(CVE-2022-23134)

前言 CVE-2022-23134是一个中等严重度的漏洞,影响Zabbix Web前端。这个漏洞允许未经身份验证的用户访问setup.php文件的某些步骤,这些步骤通常只对超级管理员开放。利用这个漏洞,攻击者可以通过跳过某些步骤来重新配置Zabbix前端&#xff0c…

Qt 线程同步机制 互斥锁 信号量 条件变量 读写锁

qt线程同步 Qt提供了丰富的线程同步机制来帮助开发者更高效和安全地进行多线程编程。其主要包括: QMutex:为共享数据提供互斥访问能力,避免同时写入导致的数据冲突。利用lock()/unlock()方法实现锁定和解锁。 QReadWriteLock:读写锁,允许多个读线程同时访问,但写操作需要独占…

Java面试八股之MySQL中int(10)和bigint(10)能存储读的数据大小一样吗

MySQL中int(10)和bigint(10)能存储读的数据大小一样吗 在MySQL中,int(10)和bigint(10)的数据存储能力并不相同,尽管括号内的数字(如10)看起来似乎暗示着某种关联,但实际上这个数字代表的是显示宽度,而不是…

基于信号量的生产者消费者模型

文章目录 信号量认识概念基于线程分析信号量信号量操作 循环队列下的生产者消费者模型理论认识代码部分 信号量 认识概念 信号量本质: 计数器 它也叫做公共资源 为了线程之间,进程间通信------>多个执行流看到的同一份资源---->多个资源都会并发访问这个资源(此时易出现…

Python OpenCV 教学取得视频资讯

这篇教学会介绍使用OpenCV,取得影像的长宽尺寸、以及读取影像中某些像素的颜色数值。 因为程式中的OpenCV 会需要使用镜头或GPU,所以请使用本机环境( 参考:使用Python 虚拟环境) 或使用Anaconda Jupyter 进行实作( 参考:使用Anaco…

关于.NETCORE站点程序部署到nginx上无法访问静态文件和无法正确生成文件的问题解决过程。

我的netcore6项目,部署到IIS的时候,生成报告时,需要获取公司LOGO图片放到PDF报告文件中,这时候访问静态图片没有问题。 然后还有生成邀请二维码图片,这时候动态创建图片路径和图片也没有问题,可以在站点的…

14-58 剑和诗人32 - 使用矢量数据库增强 LLM 应用程序

GPT-4、Bloom、LaMDA 等大型语言模型 (LLM) 在生成类似人类的文本方面表现出了令人印象深刻的能力。然而,它们在事实准确性和推理能力等方面仍然面临限制。这是因为,虽然它们的基础是从大量文本数据中提取统计模式,但它们缺乏结构化的知识源来为其输出提供依据。 最近,我们…

Python:安装/Mac

之前一直陆陆续续有学python!今天开始!正式开肝!!! 进入网站:可能会有点慢,多开几个网页 https://www.python.org 点击下载,然后进入新的页面,往下滑 来到File&#xff0…

成为编程大佬!!——数据结构与算法(1)——算法复杂度!!

前言:解决同一个程序问题可以通过多个算法解决,那么要怎样判断一个算法的优劣呢?🤔 算法复杂度 算法复杂度是对某个程序运行时的时空效率的粗略估算,常用来判断一个算法的好坏。 我们通过两个维度来看算法复杂度——…

c++ 多边形 xyz 数据 获取 中心点方法

有需求需要对。多边形 获取中心点方法&#xff0c;绝大多数都是 puthon和java版本。立体几何学中的知识。 封装函数 point ##########::getCenterOfGravity(std::vector<point> polygon) {if (polygon.size() < 2)return point();auto Area [](point p0, point p1, p…

leetcode--从中序与后序遍历序列构造二叉树

leeocode地址&#xff1a;从中序与后序遍历序列构造二叉树 给定两个整数数组 inorder 和 postorder &#xff0c;其中 inorder 是二叉树的中序遍历&#xff0c; postorder 是同一棵树的后序遍历&#xff0c;请你构造并返回这颗 二叉树 。 示例 1: 输入&#xff1a;inorder …

Oracle基础以及一些‘方言’(二)

1、Oracle的查询语法结构 Oracle 的单表查询的语法结构&#xff1a; SELECT 1 FROM 2 WHERE 3 GROUP BY 4 HAVING 5 ORDER BY 6 其每个关键词的功能与MySQL中的功能已知&#xff0c;不过分页查询的关键词 limit 并不在Oracle的语法结构中。伪列&#xff1a; 在 Oracle 的表的使…