Open3D KDtree的建立与使用

目录

一、概述

1.1kd树原理

1.2kd树搜索原理

1.3kd树构建示例

二、常见的领域搜索方式

2.1K近邻搜索(K-Nearest Neighbors, KNN Search)

2.2半径搜索(Radius Search)

2.3混合搜索(Hybrid Search)

三、代码实现

3.1关键函数

3.1.1K近邻搜索

3.1.2半径邻域搜索

3.1.3混合搜索

3.2完整代码

四、实现效果


一、概述

1.1kd树原理

        KD树(K-Dimensional Tree)是一种用于组织k维空间数据的树状数据结构,特别适用于多维空间中的最近邻搜索和范围搜索KD树通过递归地将空间划分为较小的子空间,从而实现高效的空间查询。

KD树的构建原理:

  1. 选择分割维度从数据集中选择一个维度进行分割。通常选择当前维度上的方差最大的维度,以最大化分割的效果。这可以帮助平衡树的结构。
  2. 选择分割点:在选择的分割维度上选择中位数作为分割点。中位数确保每次分割后,两个子空间包含的点数大致相等,从而保持树的平衡。
  3. 递归构建子树:对于每个子集,递归地选择新的分割维度和分割点,直到达到某个终止条件,例如节点包含的点数小于某个阈值或树的深度达到预定值。

1.2kd树搜索原理

1.最近邻搜索:

  • 从根节点开始,根据查询点在当前分割维度上的值,递归地搜索子树,直到到达叶节点。
  • 在回溯过程中,检查当前节点是否比已知的最近邻更近,如果是,则更新最近邻。
  • 还需检查当前节点的另一子树是否可能包含更近的点,如果可能,则进行搜索。

2.范围搜索:

  • 类似于最近邻搜索,通过比较查询点与分割点的关系,递归地搜索子树,检查节点是否在查询范围内。


1.3kd树构建示例

我们将使用以下点构建一个KD树:

A(2,3), B(5,4), C(9,6), D(4,7), E(8,1), F(7,2)

第一层:

  • 选择 x 轴进行分割。
  • 选择 x 轴上的中位数作为分割点,这里是点 D(4,7)。
                D(4,7)
               /      \

第二层:

  • 对于左子树,选择 y 轴进行分割。
  • 左子树的点为 A(2,3) 和 B(5,4),选择 y 轴上的中位数点 A(2,3) 作为分割点。
  • 对于右子树,选择 y 轴进行分割。
  • 右子树的点为 C(9,6), E(8,1) 和 F(7,2),选择 y 轴上的中位数点 F(7,2) 作为分割点。
                D(4,7)
               /      \
          A(2,3)     F(7,2)
             \       /    \
            B(5,4) E(8,1) C(9,6)

第三层:

  • 对于左子树的右子树,选择 x 轴分割。
  • 对于右子树的左右子树,选择 x 轴分割。

最终构建的KD树结构如下:

                D(4,7)
               /      \
          A(2,3)     F(7,2)
             \       /    \
            B(5,4) E(8,1) C(9,6)

二、常见的领域搜索方式

2.1K近邻搜索(K-Nearest Neighbors, KNN Search)

K近邻搜索是找到离查询点最近的K个点的一种方法。K近邻搜索基于欧几里得距离度量,通过KD树可以高效地实现。

过程:

  • 从根节点开始,根据查询点在当前分割维度上的值,递归地搜索子树,直到到达叶节点。
  • 在回溯过程中,检查当前节点是否比已知的K个最近邻点更近,如果是,则更新最近邻集合。
  • 还需检查当前节点的另一子树是否可能包含更近的点,如果可能,则进行搜索。

应用:

  • 数据分类:KNN算法在分类问题中广泛应用,通过查找最近的K个邻居进行多数投票决定分类结果。
  • 数据降噪:可以通过找到每个点的K个最近邻来平滑数据。

2.2半径搜索(Radius Search)

半径搜索是找到所有在查询点某个给定半径范围内的点的一种方法。与K近邻搜索不同,半径搜索返回的是所有在指定半径范围内的点。

过程:

  • 从根节点开始,根据查询点和分割点之间的距离,递归地搜索子树。
  • 检查当前节点是否在查询点的半径范围内,如果是,则将其加入结果集合。
  • 检查当前节点的另一子树是否可能包含在半径范围内的点,如果可能,则进行搜索。

应用:

  • 密度估计:通过找到某个区域内的所有点,可以估计该区域的点云密度。
  • 空间聚类:在聚类算法中,半径搜索用于找到每个点的邻域,从而进行聚类。

2.3混合搜索(Hybrid Search)

混合搜索结合了K近邻搜索和半径搜索的特点,在进行K近邻搜索的同时,还限制了搜索范围在一个给定的半径内。也就是说,它在指定半径范围内找到最多K个最近的点。

过程:

  • 从根节点开始,根据查询点在当前分割维度上的值和半径约束,递归地搜索子树,直到到达叶节点。
  • 检查当前节点是否在查询点的半径范围内,并且是否属于最近的K个点,如果是,则将其加入结果集合。
  • 检查当前节点的另一子树是否可能包含在半径范围内并且属于最近的K个点,如果可能,则进行搜索。

应用:

  • 提高搜索效率:在处理大规模点云数据时,混合搜索可以限制搜索范围,从而提高搜索效率。
  • 平衡搜索结果:混合搜索可以在保证结果精确度的同时,限制搜索范围,避免返回过多不相关的点。

三、代码实现

3.1关键函数

3.1.1K近邻搜索

 search_knn_vector_3d返回查询点的k个最近邻的索引列表。这些相邻的点存储在数组numpy中,使用pcd.colors对numpy数组内所有的点进行颜色渲染(渲染为绿色[0,1,0])。这里跳过了第一个索引点,因为它是查询点本身

#K近邻搜索
pcd.colors[10000] = [1, 0, 0]#给定查询点并渲染为红色
[k, idx, _] = pcd_tree.search_knn_vector_3d(pcd.points[10000], 200)#K近邻搜索
np.asarray(pcd.colors)[idx[1:], :] = [0, 1, 0]#K邻域的点,渲染为绿色

3.1.2半径邻域搜索

  使用 search_radius_vector_3d查询所有的和查询点点距离小于给定半径的点

#半径搜索
pcd.colors[5000] = [1, 0, 0]#给定查询点并渲染为红色
[k1, idx1, _] = pcd_tree.search_radius_vector_3d(pcd.points[5000], 0.02)#半径搜索
np.asarray(pcd.colors)[idx1[1:], :] = [0, 0, 1]#半径搜索结果并渲染为蓝色

3.1.3混合搜索

除了KNN搜索(search_knn_vector_3d)和RNN搜索(search_radius_vector_3d)以外,Open3d还提供了混合搜索函数(search_hybrid_vector_3d)。它最多返回K个和查询点距离小于给定半径的最邻近点。这个函数结合了KNN和RNN的搜索条件,在某些文献中也被称作RKNN搜索。在许多情况下它有着性能优势,并且在Open3d的函数中大量的使用.

#混合搜索
pcd.colors[30000] = [1, 1, 0]#给定查询点并渲染为黄色
[k2, idx2, _] = pcd_tree.search_hybrid_vector_3d(pcd.points[30000], 0.05,200)#K近邻搜索
np.asarray(pcd.colors)[idx2[1:], :] = [0, 1, 0.8]#半径搜索结果并渲染为青色

3.2完整代码

import open3d as o3d
import numpy as np
pcd = o3d.io.read_point_cloud("Horse.pcd")
pcd.paint_uniform_color([0.5, 0.5, 0.5])#把所有点渲染为灰色
pcd_tree = o3d.geometry.KDTreeFlann(pcd)#建立KD树索引

#K近邻搜索
pcd.colors[10000] = [1, 0, 0]#给定查询点并渲染为红色


[k, idx, _] = pcd_tree.search_knn_vector_3d(pcd.points[10000], 200)#K近邻搜索
np.asarray(pcd.colors)[idx[1:], :] = [0, 1, 0]#K邻域的点,渲染为绿色

#半径搜索
pcd.colors[5000] = [1, 0, 0]#给定查询点并渲染为红色
[k1, idx1, _] = pcd_tree.search_radius_vector_3d(pcd.points[5000], 0.02)#半径搜索
np.asarray(pcd.colors)[idx1[1:], :] = [0, 0, 1]#半径搜索结果并渲染为蓝色

#混合搜索
pcd.colors[30000] = [1, 1, 0]#给定查询点并渲染为黄色
[k2, idx2, _] = pcd_tree.search_hybrid_vector_3d(pcd.points[30000], 0.05,200)#K近邻搜索
np.asarray(pcd.colors)[idx2[1:], :] = [0, 1, 0.8]#半径搜索结果并渲染为青色
o3d.visualization.draw_geometries([pcd])

四、实现效果

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/784912.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

进程 VS 线程(javaEE篇)

🍁 个人主页:爱编程的Tom💫 本篇博文收录专栏:JavaEE初阶👉 目前其它专栏:c系列小游戏 c语言系列--万物的开始_ 等 🎉 欢迎 👍点赞✍评论⭐收藏💖三连支…

shell脚本编程的练习

字符测试方法: 双目测试 比较两个字符串: :等于,等值比较 !:不等 单目测试: -n $stringVar:字符串是否为空,不空为真,空则为假 -z $stringVar:字符串是否为空,空则为…

xxl-job集成SpringBoot

安装xxl-job客户端一般有很多方式,我这里给大家提供两种安装方式,包含里面的各项配置等等。 前期需要准备好MySQL数据库。复制SQL到数据库里面。 # # XXL-JOB v2.4.2-SNAPSHOT # Copyright (c) 2015-present, xuxueli.CREATE database if NOT EXISTS x…

终于找到了免费的C盘清理软件(极智C盘清理)

搜了很久,终于让我找到了一款 完全免费的C盘清理软件(极智C盘清理)。 点击前往官网免费使用极智C盘清理软件: C盘清理 用户好评 完全免费的极智C盘清理 用极智C盘清理清理了下系统的临时文件、缓存等无用数据文件,C盘终…

JavaDS —— 顺序表ArrayList

顺序表 顺序表是用一段物理地址连续的存储单元依次存储数据元素的线性结构,一般情况下采用数组存储。在数组上完成数据的增删查改。在物理和逻辑上都是连续的。 模拟实现 下面是我们要自己模拟实现的方法: 首先我们要创建一个顺序表,顺序表…

00 Debian字符界面如何支持中文

作者:网络傅老师 特别提示:未经作者允许,不得转载任何内容。违者必究! Debian字符界面如何支持中文 《傅老师Debian知识库系列之00》——原创 前言 傅老师Debian知识库特点: 1、拆解Debian实用技能; 2、…

Python--并发编程--协程

概念 协程是轻量级的线程,它是程序员管理的并发机制,使得在一个线程中程序可以在多个函数之间交替运行。 Python中主要通过asyncio模块实现协程。 协程函数 用async修饰的函数 import asyncio# func为协程函数 async def func():await asyncio.slee…

博美犬插画:成都亚恒丰创教育科技有限公司

​博美犬插画:萌动心灵的细腻笔触 在浩瀚的艺术海洋中,有一种艺术形式总能以它独有的温柔与细腻,触动人心最柔软的部分——那便是插画。而当插画遇上博美犬这一萌宠界的明星,便诞生了一幅幅令人爱不释手的作品,成都亚…

CLIP编码器调用时刚开始正常,然后输出全部变为NaN

碰到了这个问题:输入是正常的,输出全是NaN 网上办法不多,找了半天终于看到问题所在,但是没有说在哪里改的,故记录一下。 改一下模型精度就正常了,默认的是fp16,改为fp32即可 具体步骤如下&…

GD 32基础知识汇总

1.0 GD32实现流水灯 GD 32点亮流水灯-CSDN博客文章浏览阅读69次。第一步:编写LED驱动,初始化驱动程序创建结构体:第一个参数表示GPIO使能,第二个参数表示单片机的IO口,第三个参数表示需要草操作的单片机引脚&#xff…

昇思25天学习打卡营第11天|文本解码原理-以MindNLP为例

文本解码原理-以MindNLP为例 这篇主要讲讲文本生成的几个方法,首先介绍一下什么是自回归语言模型。 自回归语言模型 autoregressive language model,根据前面的词或上下文,生成后续的词或句子的语言模型。 有几种典型的自回归语言模型&…

前端跨域问题--解析与实战

引言 在现代网络应用中,跨域问题是一个常见的挑战。由于浏览器的同源策略,限制了从不同源(域名、协议或端口)进行资源共享,这就造成了跨域访问的限制。跨域资源共享(CORS)是一种技术&#xff0…

视频融合共享平台视频共享融合赋能平台数字化升级医疗体系

在当前,医疗健康直接关系到国计民生,然而,由于医疗水平和资源分布不均,以及信息系统老化等问题,整体医疗服务能力和水平的提升受到了限制。视频融合云平台作为数字医疗发展的关键推动力量,在医疗领域的广泛…

大话C语言:第29篇 指针

1 指针概念 指针:地址的变量化形式,其存储的是内存中某个存储单元的地址。它是地址的数值表示。 指针变量:一种特殊的变量,它专门用于存放变量的地址(即指针)。 注意,指针和指针变量的区别&am…

【后端开发】docker安装MySQL并做端口映射

1.拉取MySQL镜像 docker pull mysql但是中途可能出现连接超时的情况 可以使用; docker pull do.nark.eu.org/library/mysql用国内镜像去拉取可能会快很多 2.启动容器并做端口映射 因为MySQL是在docker里面的所以要从docker外面连接MySQL需要做端口映射 以下是端口映射的的命…

python爬虫加入进度条

安装tqdm和requests库 pip install tqdm -i https://pypi.tuna.tsinghua.edu.cn/simplepip install requests -i https://pypi.tuna.tsinghua.edu.cn/simple带进度条下载 import time # 引入time模块,用于处理时间相关的功能 from tqdm import * # 从tqdm包中…

【Java】搜索引擎设计:信息搜索怎么避免大海捞针?

一、内容分析 我们准备开发一个针对全网内容的搜索引擎,产品名称为“Bingoo”。 Bingoo的主要技术挑战包括: 针对爬虫获取的海量数据,如何高效地进行数据管理;当用户输入搜索词的时候,如何快速查找包含搜索词的网页…

YOLOv10改进 | EIoU、SIoU、WIoU、DIoU、FocusIoU等二十余种损失函数

一、本文介绍 这篇文章介绍了YOLOv10的重大改进,特别是在损失函数方面的创新。它不仅包括了多种IoU损失函数的改进和变体,如SIoU、WIoU、GIoU、DIoU、EIOU、CIoU,还融合了“Focus”思想,创造了一系列新的损失函数。这些组合形式的…

深度解密Spark性能优化之道课程

课程通过实战案例解析和性能调优技巧的讲解,帮助学员提升大数据处理系统的性能和效率。课程内容涵盖了Spark性能调优的各个方面,包括内存管理、并行度设置、数据倾斜处理、Shuffle调优、资源配置等关键技术和策略。学员将通过实际案例的演示和分析&#…

Caterpillar on a Tree

首先一个很显然的地方就是使用传送门肯定是在叶子节点使用,我们来考虑一下整个过程是怎么样的 为了方便,我们不妨假设可以传送回根节点\(k1\)次,然后要求最后回到根节点 我们先从根节点走到某一个叶子结点,然后再从这个叶子节点走…