2.2 磁盘比内存慢几万倍?
存储器方面的设备,分类比较多,那我们肯定不能只买一种存储器,比如你除了要买内存,还要买硬盘,而针对硬盘我们还可以选择是固态硬盘还是机械硬盘。
相信大家都知道内存和硬盘都属于计算机的存储设备,断电后内存的数据是会丢失的,而硬盘则不会,因为硬盘是持久化存储设备,同时也是一个 I/O 设备。
但其实 CPU 内部也有存储数据的组件,这个应该比较少人注意到,比如寄存器、CPU L1/L2/L3 Cache 也都是属于存储设备,只不过它们能存储的数据非常小,但是它们因为靠近 CPU 核心,所以访问速度都非常快,快过硬盘好几个数量级别。
问题来了,那机械硬盘、固态硬盘、内存这三个存储器,到底和 CPU L1 Cache 相比速度差多少倍呢?
在回答这个问题之前,我们先来看看「存储器的层次结构」,好让我们对存储器设备有一个整体的认识。
存储器的层次结构
我们可以把 CPU 比喻成我们的大脑,大脑正在思考的东西,就好比 CPU 中的寄存器,处理速度是最快的,但是能存储的数据也是最少的,毕竟我们也不能一下同时思考太多的事情,除非你练过。
我们大脑中的记忆,就好比 CPU Cache,中文称为 CPU 高速缓存,处理速度相比寄存器慢了一点,但是能存储的数据也稍微多了一些。
CPU Cache 通常会分为 L1、L2、L3 三层,其中 L1 Cache 通常分成「数据缓存」和「指令缓存」,L1 是距离 CPU 最近的,因此它比 L2、L3 的读写速度都快、存储空间都小。我们大脑中短期记忆,就好比 L1 Cache,而长期记忆就好比 L2/L3 Cache。
寄存器和 CPU Cache 都是在 CPU 内部,跟 CPU 挨着很近,因此它们的读写速度都相当的快,但是能存储的数据很少,毕竟 CPU 就这么丁点大。
知道 CPU 内部的存储器的层次分布,我们放眼看看 CPU 外部的存储器。
当我们大脑记忆中没有资料的时候,可以从书桌或书架上拿书来阅读,那我们桌子上的书,就好比内存,我们虽然可以一伸手就可以拿到,但读写速度肯定远慢于寄存器,那图书馆书架上的书,就好比硬盘,能存储的数据非常大,但是读写速度相比内存差好几个数量级,更别说跟寄存器的差距了。
我们从图书馆书架取书,把书放到桌子上,再阅读书,我们大脑就会记忆知识点,然后再经过大脑思考,这一系列过程相当于,数据从硬盘加载到内存,再从内存加载到 CPU 的寄存器和 Cache 中,然后再通过 CPU 进行处理和计算。
对于存储器,它的速度越快、能耗会越高、而且材料的成本也是越贵的,以至于速度快的存储器的容量都比较小。
CPU 里的寄存器和 Cache,是整个计算机存储器中价格最贵的,虽然存储空间很小,但是读写速度是极快的,而相对比较便宜的内存和硬盘,速度肯定比不上 CPU 内部的存储器,但是能弥补存储空间的不足。
存储器通常可以分为这么几个级别:
-
寄存器;
-
CPU Cache;
-
L1-Cache;
-
L2-Cache;
-
L3-Cahce;
-
-
内存;
-
SSD/HDD 硬盘
寄存器
最靠近 CPU 的控制单元和逻辑计算单元的存储器,就是寄存器了,它使用的材料速度也是最快的,因此价格也是最贵的,那么数量不能很多。
寄存器的数量通常在几十到几百之间,每个寄存器可以用来存储一定的字节(byte)的数据。比如:
-
32 位 CPU 中大多数寄存器可以存储
4
个字节; -
64 位 CPU 中大多数寄存器可以存储
8
个字节。
寄存器的访问速度非常快,一般要求在半个 CPU 时钟周期内完成读写,CPU 时钟周期跟 CPU 主频息息相关,比如 2 GHz 主频的 CPU,那么它的时钟周期就是 1/2G,也就是 0.5ns(纳秒)。
CPU 处理一条指令的时候,除了读写寄存器,还需要解码指令、控制指令执行和计算。如果寄存器的速度太慢,则会拉长指令的处理周期,从而给用户的感觉,就是电脑「很慢」
CPU Cache
CPU Cache 用的是一种叫 SRAM(*Static Random-Access* Memory,静态随机存储器) 的芯片。
SRAM 之所以叫「静态」存储器,是因为只要有电,数据就可以保持存在,而一旦断电,数据就会丢失了。
在 SRAM 里面,一个 bit 的数据,通常需要 6 个晶体管,所以 SRAM 的存储密度不高,同样的物理空间下,能存储的数据是有限的,不过也因为 SRAM 的电路简单,所以访问速度非常快。
CPU 的高速缓存,通常可以分为 L1、L2、L3 这样的三层高速缓存,也称为一级缓存、二级缓存、三级缓存。
L1 高速缓存
L1 高速缓存的访问速度几乎和寄存器一样快,通常只需要 2~4
个时钟周期,而大小在几十 KB 到几百 KB 不等。
每个 CPU 核心都有一块属于自己的 L1 高速缓存,指令和数据在 L1 是分开存放的,所以 L1 高速缓存通常分成指令缓存和数据缓存。
在 Linux 系统,我们可以通过这条命令,查看 CPU 里的 L1 Cache 「数据」缓存的容量大小:
$ cat /sys/devices/system/cpu/cpu0/cache/index0/size 32K
而查看 L1 Cache 「指令」缓存的容量大小,则是:
$ cat /sys/devices/system/cpu/cpu0/cache/index1/size 32K
L2 高速缓存
L2 高速缓存同样每个 CPU 核心都有,但是 L2 高速缓存位置比 L1 高速缓存距离 CPU 核心 更远,它大小比 L1 高速缓存更大,CPU 型号不同大小也就不同,通常大小在几百 KB 到几 MB 不等,访问速度则更慢,速度在 10~20
个时钟周期。
在 Linux 系统,我们可以通过这条命令,查看 CPU 里的 L2 Cache 的容量大小:
$ cat /sys/devices/system/cpu/cpu0/cache/index2/size 256K
L3 高速缓存
L3 高速缓存通常是多个 CPU 核心共用的,位置比 L2 高速缓存距离 CPU 核心 更远,大小也会更大些,通常大小在几 MB 到几十 MB 不等,具体值根据 CPU 型号而定。
访问速度相对也比较慢一些,访问速度在 20~60
个时钟周期。
在 Linux 系统,我们可以通过这条命令,查看 CPU 里的 L3 Cache 的容量大小:
$ cat /sys/devices/system/cpu/cpu0/cache/index3/size 3072K
存储器的层次关系
现代的一台计算机,都用上了 CPU Cahce、内存、到 SSD 或 HDD 硬盘这些存储器设备了。
其中,存储空间越大的存储器设备,其访问速度越慢,所需成本也相对越少。
CPU 并不会直接和每一种存储器设备直接打交道,而是每一种存储器设备只和它相邻的存储器设备打交道。
比如,CPU Cache 的数据是从内存加载过来的,写回数据的时候也只写回到内存,CPU Cache 不会直接把数据写到硬盘,也不会直接从硬盘加载数据,而是先加载到内存,再从内存加载到 CPU Cache 中。
所以,每个存储器只和相邻的一层存储器设备打交道,并且存储设备为了追求更快的速度,所需的材料成本必然也是更高,也正因为成本太高,所以 CPU 内部的寄存器、L1\L2\L3 Cache 只好用较小的容量,相反内存、硬盘则可用更大的容量,这就我们今天所说的存储器层次结构。
另外,当 CPU 需要访问内存中某个数据的时候,如果寄存器有这个数据,CPU 就直接从寄存器取数据即可,如果寄存器没有这个数据,CPU 就会查询 L1 高速缓存,如果 L1 没有,则查询 L2 高速缓存,L2 还是没有的话就查询 L3 高速缓存,L3 依然没有的话,才去内存中取数据。
下面这张表格是不同层级的存储器之间的成本对比图:
你可以看到 L1 Cache 的访问延时是 1 纳秒,而内存已经是 100 纳秒了,相比 L1 Cache 速度慢了 100
倍。另外,机械硬盘的访问延时更是高达 10 毫秒,相比 L1 Cache 速度慢了 10000000
倍,差了好几个数量级别。
在价格上,每生成 MB 大小的 L1 Cache 相比内存贵了 466
倍,相比机械硬盘那更是贵了 175000
倍。
我在某东逛了下各个存储器设备的零售价,8G 内存 + 1T 机械硬盘 + 256G 固态硬盘的总价格,都不及一块 Intle i5-10400 的 CPU 的价格,这款 CPU 的高速缓存的总大小也就十多 MB