【数据结构】链表带环问题分析及顺序表链表对比分析

【C语言】链表带环问题分析及顺序表链表对比分析

🔥个人主页大白的编程日记

🔥专栏C语言学习之路


文章目录

  • 【C语言】链表带环问题分析及顺序表链表对比分析
    • 前言
    • 一.顺序表和链表对比
      • 1.1顺序表和链表的区别
      • 1.2缓存利用率(缓存命中率)
    • 二.链表的带环问题
      • 2.1快慢指针
      • 2.2证明快慢指针相遇问题
      • 2.3快指针的步长
      • 2.4环的入口
    • 后言

前言

哈喽,各位小伙伴大家好!由于考试周很久没有更新博客了。今天给大家带来的是链表的带环问题和顺序表链表的对比分析。话不多说,进入正题。向大厂冲锋!

一.顺序表和链表对比

1.1顺序表和链表的区别

顺序表和链表是两种不同的数据结构。他们各有各的优劣。我们就来对比分析一下他们的区别。我们这里用带头双向循环链表和顺序表做对比。

  • 存储空间
    顺序表:物理上是连续的。
    链表:因为链表是由节点组成,每个节点由指针连接。 所以在逻辑上是连续的,但每个节点都是malloc动态开辟的,在物理空间上不一定连续。
  • 随机访问
    顺序表:顺序表可以通过下标来进行随机访问。
    链表:链表不支持随机访问,只能从头节点开始遍历寻找节点。
  • 任意位置插入删除
    顺序表:如果不是尾插尾删,需要挪动数据。
    链表:链表由节点组成,插入或删除只需要修改前后节点的指针指向即可。
  • 扩容
    顺序表:空间不够需要扩容。
    扩容realloc本身会有消耗且异地扩容消耗不小,2倍扩容可能存在空间浪费。
    链表:按需申请释放,需要一个申请一个,不存在扩容,不会浪费空间。
#define _CRT_SECURE_NO_WARNINGS 1
#include<stdio.h>
#include<stdlib.h>
int main()
{
	int* p = (int*)malloc(4);
	printf("%p\n", p);
	int* p1 = (int*)realloc(p, 40);
	printf("%p", p1);
}

异地扩容:
只要空间大一点,基本都是异地扩容。
原地扩容:

  • 应用场景

顺序表和链表的优劣是互补的。
顺序表适合随机访问,不适合中间位置的插入删除。
链表适合任意位置的插入删除,但无法随机访问。
所以如果经常随机访问,但只需要尾插尾删就选择顺序表。
如果不经常随机访问,在中间位置插入删除就选择链表。
具体根据他们的优劣进行选择。

1.2缓存利用率(缓存命中率)

顺序表和链表的区别还有一个就是
顺序表的缓存命中率高。
链表的缓存命中率低。

为什么呢?什么是缓存命中率呢?

  • 内存和硬盘

这是我们计算机的内部的存储结构。
主存也就是我们的内存和硬盘的区别就是

内存的存储空间更小,通常为8G和16G,但速度快。需要带电存储
硬盘存储空间更大,速度慢,但不需要带电存储。
他们的本质是带不带电。

例如:

如果我正在写一份ppt,因为硬盘的速度慢,所以是存在内存中的,如果我这时电脑突然没电关机。重新开机后,我的ppt就不见了。因为我没有另存到硬盘中。
只用当我们另存到硬盘中才存在。

  • 寄存器和三级缓存
    那既然已经有内存,内存的速度也还行,为什么还有寄存器和三级缓存呢?
#define _CRT_SECURE_NO_WARNINGS 1
#include<stdio.h>
#include<stdlib.h>
int main()
{
	int i = 0;
	int ret = i++;
}

以这段代码为例:

i存在内存中,也就是main函数的栈帧里。i++的执行过程是这样的:
先把i放在eax寄存器中,
对eax++,
把eax寄存器放i的内存位置

那为什么要这样做呢?
因为CPU和内存不同频,CPU跑的太快了。
如果直接访问内存数据进行++,因为内存太慢了。
他宁愿把内存中数据加载到寄存器中,CPU在寄存器执行指令,再把运行结果返回内存。

一般来说,CPU不会直接访问内存

  • 寄存器
    如果数据比较小(4或8字节)就会把数据加载到寄存器。

  • 缓存
    如果数据比较大就加载到缓存中。

缓存命中:如果要访问的数据在缓存,叫缓存命中,直接访问。
缓存不命中,如果要访问的数据不在缓存,叫缓存不命中,先把数据加载到缓存中,再访问。

  • 缓存的加载
    如果你要加载4个字节到缓存,通常会加载一长段空间到缓存中。而不只是4个字节。为什么呢?

把内存看作学校,缓存看作大巴,CPU看作度假村。
现在学校安排大巴把学生(数据)送到度假村去。

所以顺序表的缓存命中率高,
链表的缓存命中率低,而且会造成缓存污染。
如果大家想多了解缓存的话可以看这篇文章
与程序员相关的CPU缓存知识

二.链表的带环问题

链表带环是链表中的经典问题,值得我们深入学习。解决带环问题通常使用快慢指针相遇解决。但是你如何证明快慢指针一定相遇,以及快指针的步长不同会怎样呢?接下来,小编带大家一一探讨。

2.1快慢指针

  • 题目
    环形链表

  • 思路
    创建一个快指针和一个慢指针,快指针一次走两步,慢指针一次走一步。
    如果是链表带环,快慢指针最终会相遇。不带环,则快指针走到尾。
  • 代码实现
 typedef struct ListNode ListNode; 
bool hasCycle(struct ListNode *head) 
{
    ListNode*slow,*fast;
    slow=fast=head;
    while(fast&&fast->next)
    {
        slow=slow->next;//慢指针走一步
        fast=fast->next->next;//快指针走两步
        if(fast==slow)//快慢指针相遇
        {
            return true;
        }
    }
    return false;//不带环
}

2.2证明快慢指针相遇问题

那如何证明题目一定会相遇呢?

当慢指针入环时,快指针与慢指针相差N个节点。
由于快指针每次走两步,慢指针走一步。
每次移动快指针都会与慢指针的距离缩小一个节点。
当他们的距离节点缩小为0时,就会相遇。
所以快慢指针一定能够相遇。

2.3快指针的步长

那快指针是不是只能走一步呢?如果快指针走3,4,5…N步还一定能相遇吗?

  • 步长为3时
    证明结果如下

我们用快慢指针步长的关系列出等式,反推证明N为奇数和C为偶数的情况不会出现,从而得出结论步长为3时一定能相遇。

  • 验证

  • 步长为3,4,5…N
    这些情况和前面的推导证明过程相似,大家有兴趣可以自己深入探究。

2.4环的入口

  • 题目
    环形链表二

  • 思路
    创建一个快指针和一个慢指针,快指针一次走两步,慢指针一次走一步。
    如果是链表带环,快慢指针最终会相遇。
    一个指针相遇点开始走,一个指针从头节点开始走,每次两个指针都走一步。
    当两个指针相遇时,相遇节点就是入环节点。
    不带环,则快指针走到尾。

  • 代码实现

 typedef struct ListNode ListNode ;
struct ListNode *detectCycle(struct ListNode *head) 
{
    ListNode*slow,*fast;
    slow=fast=head;
    while(fast&&fast->next)
    {
        fast=fast->next->next;
        slow=slow->next;
        if(slow==fast)
        {
            ListNode* pcur=slow;
            while(pcur!=head)
            {
                pcur=pcur->next;
                head=head->next;
            }
            return pcur;
        }
    }
    return NULL;
}
  • 证明

具体证明过程如下:

  • 验证
    -在这里插入图片描述

所以根据推导我们得出只要再相遇后,一个head指针从头节点出发,一个pcur节点从相遇点出发,等他们相遇时,相遇点就是入环点。

后言

这就是链表的带环问题和顺序表链表的对比。这些都是我们数据结构学习时的重要内容。大家一定要好好掌握。今天就分享到这里,咱们下期见!拜拜~
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/781143.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

ID3算法决策树

步骤&#xff1a; 先计算出信息量&#xff1b;信息熵&#xff1b;信息增量&#xff1b; 再比较信息增量的大小&#xff0c;确定分类依据。 信息量&#xff1a; 信息熵&#xff1a; 信息增益&#xff1a;

【网络安全】实验五(身份隐藏与ARP欺骗)

一、本次实验的实验目的 &#xff08;1&#xff09;了解网络攻击中常用的身份隐藏技术&#xff0c;掌握代理服务器的配置及使用方法 &#xff08;2&#xff09;通过实现ARP欺骗攻击&#xff0c;了解黑客利用协议缺陷进行网络攻击的一般方法 二、搭配环境 打开三台虚拟机&#…

IntelliJ IDEA 同时多行同时编辑操作快捷键

首先 点击要编辑的地方,长按鼠标左键不放,同时按住 Ctrl Shift Alt,然后就可以进行多行编辑了

【Unity】RPG2D龙城纷争(八)寻路系统

更新日期&#xff1a;2024年7月4日。 项目源码&#xff1a;第五章发布&#xff08;正式开始游戏逻辑的章节&#xff09; 索引 简介一、寻路系统二、寻路规则&#xff08;角色移动&#xff09;三、寻路规则&#xff08;角色攻击&#xff09;四、角色移动寻路1.自定义寻路规则2.寻…

如何根据控制框图写传递函数

控制框图&#xff08;也称为方块图或信号流图&#xff09;是控制系统工程中常用的一种图形表示方法&#xff0c;用于描述系统中各个组件之间的关系以及信号流向。传递函数则是描述线性时不变系统动态特性的数学模型&#xff0c;通常用于分析和设计控制系统。 识别组件&#xff…

Learn To Rank

在信息检索中&#xff0c;给定一个query&#xff0c;搜索引擎召回一系列相关的Documents&#xff0c;然后对这些Documents进行排序&#xff0c;最后将Top N的Documents输出。 排序问题最关注的是各Documents之间的相对顺序关系&#xff0c;而不是各个Documents的预测分最准确。…

GD32实战篇-双向数控BUCK-BOOST-BOOST升压理论基础

本文章基于兆易创新GD32 MCU所提供的2.2.4版本库函数开发 向上代码兼容GD32F450ZGT6中使用 后续项目主要在下面该专栏中发布&#xff1a; https://blog.csdn.net/qq_62316532/category_12608431.html?spm1001.2014.3001.5482 感兴趣的点个关注收藏一下吧! 电机驱动开发可以跳转…

即时通讯平台项目测试(登录/注册页面)

http://8.130.98.211:8080/login.html项目访问地址&#xff1a;即时通讯平台http://8.130.98.211:8080/login.html 本篇文章进行登录和注册页面的测试。自动化脚本的依赖在文章末尾。 登录页面测试 UI测试 测试环境&#xff1a;Win11&#xff1b;IntelliJ IDEA 2023.2&#…

C语言课设--读取文件并统计数据

读取文件并统计数据 // 统计记事本英文字符数 //功能 &#xff1a; 读 文件 a.txt 统计出各种 数字 大写字母 小写字母 0~9 A~Z a ~z各有多少个 程序主体框架如下&#xff1a; #include<stdio.h> int a[128]{0};//其中数组元素a[i]保存 ASCII 码为i的字符的数量 v…

css样式学习样例之边框

成品效果 边框固定 .login_box{width: 450px;height: 300px;background-color: aliceblue;border-radius: 3px;position: absolute;left: 50%;top: 50%;transform: translate(-50%,-50%); }这段CSS代码定义了一个名为.login_box的类的样式&#xff0c;它主要用于创建一个登录框…

【在Linux世界中追寻伟大的One Piece】HTTPS协议原理

目录 1 -> HTTPS是什么&#xff1f; 2 -> 相关概念 2.1 -> 什么是"加密" 2.2 -> 为什么要加密 2.3 -> 常见的加密方式 2.4 -> 数据摘要 && 数据指纹 2.5 -> 数字签名 3 -> HTTPS的工作过程 3.1 -> 只使用对称加密 3.2 …

Linux系统安装软件包的方法rpm和yum详解

起因&#xff1a; 本篇文章是记录学习Centos7的历程 关于rpm 常见命令 1&#xff09;查看已经安装的软件包 rpm -q 软件包名 2&#xff09;查看文件的相关信息 rpm -qi 软件包名 3&#xff09;查看软件包的依赖关系 就是说要想安装这个软件包&#xff0c;就必须把一些前…

亚信安全发布2024年6月威胁态势,高危漏洞猛增60%

近日&#xff0c;亚信安全正式发布《2024年6月威胁态势报告》&#xff08;以下简称“报告”&#xff09;&#xff0c;报告显示&#xff0c;6月份新增信息安全漏洞 1794个&#xff0c;高危漏洞激增60%&#xff0c;涉及0day漏洞占67.67%&#xff1b;监测发现当前较活跃的勒索病毒…

CountDownLatch内部原理解析

文章目录 1、CountDownLatch介绍1.1、功能介绍1.2、demo1.3、问题 2、前置知识2.1、AQS整体结构2.1.1、整体结构2.1.2、state属性2.1.3、head和tail属性 3、CountDownLatchAPI源码解析3.1、countDown方法3.1.1、Sync类3.1.2、releaseShared方法3.1.3、tryReleaseShared方法 3.2…

C++库函数--next_permutation(详细)

next_permutation介绍 用于生成某个序列的下一个排列。它通常在需要生成排列的问题中使用&#xff0c;比如全排列问题。 使用方法 普通序列 &#xff1a;next_permutation&#xff08;起始地址&#xff0c;末尾地址1&#xff09; 结构体&#xff1a;next_permutation&#…

解决 Layout Inspector无法查看Component Tree 布局层级信息 | Android Studio Koala

问题描述 Tool -> Layout Inspector 显示下图&#xff0c;无法生成.li文件查看Component Tree&#xff0c;变成实时的Preview并功能点击操作&#xff0c;跟模拟器一样。 原因&#xff1a;默认勾选了"Enable embedded Layout Inspector"&#xff0c;启用了嵌入式…

笔记本电脑内存不够

笔记本电脑内存不够是众多笔记本用户面临的常见问题&#xff0c;尤其是对于一些需要处理大型文件或者运行复杂软件的用户&#xff0c;这个问题可能会严重影响笔记本的使用体验。那么&#xff0c;我们应该如何解决笔记本电脑内存不够的问题呢&#xff1f;本文将从几个方面进行详…

flask使用定时任务flask_apscheduler(APScheduler)

Flask-APScheduler描述: Flask-APScheduler 是一个 Flask 扩展&#xff0c;增加了对 APScheduler 的支持。 APScheduler 有三个内置的调度系统可供您使用&#xff1a; Cron 式调度&#xff08;可选开始/结束时间&#xff09; 基于间隔的执行&#xff08;以偶数间隔运行作业…

RabbitMq - Java客户端基础【简单案例 +Work模型】

目录 1、前置知识 1.1、AMQP怎么理解 1.2、Spring AMQP是什么 1.3、为什么要了解Spring-AMQP&#xff1f; 2、使用Spring-AMQP实现一个发消息案例 3、Work模型 问题&#xff1a; 优化&#xff1a; 小结&#xff1a;Work模型的使用&#xff1a; 1、前置知识 1.1、AMQP怎…

[激光原理与应用-101]:南京科耐激光-激光焊接-焊中检测-智能制程监测系统IPM介绍 - 5 - 3C行业应用 - 电子布局类型

目录 前言&#xff1a; 一、激光在3C行业的应用概述 1.1 概述 1.2 激光焊接在3C-电子行业应用 二、3C电子行业中激光焊接 2.1 纽扣电池 2.2 均温板 2.3 指纹识别器 2.4 摄像头模组 2.5 IC芯片切割 三、3C行业中激光切割 四、激光在3C行业中的其他应用 4.1 涂层去除…