文章目录
- 二叉树理论基础
- 二叉树种类
- 满二叉树
- 完全二叉树
- 二叉搜索树
- 平衡二叉搜索树
- 二叉树存储方式
- 二叉树遍历方式
- 二叉树的定义
- 总结
- 二叉树的递归遍历
- 思路
- 前序遍历
- 后序遍历
- 中序遍历
- 二叉树的迭代遍历
- 思路
- 前序遍历(迭代法)
- 中序遍历(迭代法)
- 后序遍历(迭代法)
- 总结
- 二叉树的统一迭代法
- 思路
- 中序遍历
- 前序遍历
- 后序遍历
- 102.二叉树的层序遍历
- 思路
- 迭代法实现
- 递归法实现
二叉树理论基础
二叉树种类
在解题过程中的二叉树有两种主要形式:满二叉树和完全二叉树
满二叉树
满二叉树:如果一棵二叉树只有度为0的结点和度为2的结点,并且度为0的结点在同一层上,则这棵二叉树为满二叉树。
如图所示:
这棵二叉树为满二叉树,也可以说深度为k,有2^k-1个节点的二叉树。
完全二叉树
什么是完全二叉树?
完全二叉树的定义如下:
- 在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值.
- 最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层(h从1开始),则该层包含 1~ 2^(h-1) 个节点。(如果该层有2^(h-1)个节点,则为满二叉树)
满二叉树也是完全二叉树
我来举一个典型的例子如题:
相信不少同学最后一个二叉树是不是完全二叉树都中招了。
之前我们讲过的优先级队列其实是一个堆,堆就是一棵完全二叉树,同时保证父子节点的顺序关系。
说白了就是
二叉搜索树
前面介绍的树,都没有数值的,而二叉搜索树是有数值的了,二叉搜索树是一个有序树。
- 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
- 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
- 它的左、右子树也分别为二叉排序树
下面这两棵树都是搜索树
平衡二叉搜索树
平衡二叉搜索树:又被称为AVL(Adelson-Velsky and Landis)树,且具有以下性质:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。
如图:
最后一棵 不是平衡二叉树,因为它的左右两个子树的高度差的绝对值超过了1。
左右子树的深度不超过1.(说白了基本上就是将数组的中值放到根节点,然后向左右或者向右遍历就是比较中值的大小,减少遍历次数)
二叉树存储方式
二叉树可以链式存储,也可以顺序存储。
那么链式存储方式就用指针, 顺序存储的方式就是用数组。
顾名思义就是顺序存储的元素在内存是连续分布的,而链式存储则是通过指针把分布在各个地址的节点串联一起。
链式存储如图:
链式存储是大家很熟悉的一种方式,那么我们来看看如何顺序存储呢?
其实就是用数组来存储二叉树,顺序存储的方式如图:
用数组来存储二叉树如何遍历的呢?
如果父节点的数组下标是 i,那么它的左孩子就是 i * 2 + 1,右孩子就是 i * 2 + 2。
但是用链式表示的二叉树,更有利于我们理解,所以一般我们都是用链式存储二叉树。
所以大家要了解,用数组依然可以表示二叉树。
二叉树遍历方式
关于二叉树的遍历方式,要知道二叉树遍历的基本方式都有哪些。
一些同学用做了很多二叉树的题目了,可能知道前中后序遍历,可能知道层序遍历,但是却没有框架。
我这里把二叉树的几种遍历方式列出来,大家就可以一一串起来了。
二叉树主要有两种遍历方式:
- 深度优先遍历:先往深走,遇到叶子节点再往回走。
- 广度优先遍历:一层一层的去遍历。
这两种遍历是图论中最基本的两种遍历方式,后面在介绍图论的时候 还会介绍到。
那么从深度优先遍历和广度优先遍历进一步拓展,才有如下遍历方式:
- 深度优先遍历
- 前序遍历(递归法,迭代法)
- 中序遍历(递归法,迭代法)
- 后序遍历(递归法,迭代法)
- 广度优先遍历
- 层次遍历(迭代法)
在深度优先遍历中:有三个顺序,前中后序遍历, 有同学总分不清这三个顺序,经常搞混,我这里教大家一个技巧。
这里前中后,其实指的就是中间节点的遍历顺序,只要大家记住 前中后序指的就是中间节点的位置就可以了。
看如下中间节点的顺序,就可以发现,中间节点的顺序就是所谓的遍历方式
- 前序遍历:中左右
- 中序遍历:左中右
- 后序遍历:左右中
大家可以对着如下图,看看自己理解的前后中序有没有问题。
最后再说一说二叉树中深度优先和广度优先遍历实现方式,我们做二叉树相关题目,经常会使用递归的方式来实现深度优先遍历,也就是实现前中后序遍历,使用递归是比较方便的。
之前我们讲栈与队列的时候,就说过栈其实就是递归的一种实现结构,也就说前中后序遍历的逻辑其实都是可以借助栈使用递归的方式来实现的。
而广度优先遍历的实现一般使用队列来实现,这也是队列先进先出的特点所决定的,因为需要先进先出的结构,才能一层一层的来遍历二叉树。
这里其实我们又了解了栈与队列的一个应用场景了。
具体的实现我们后面都会讲的,这里大家先要清楚这些理论基础。
二叉树的定义
刚刚我们说过了二叉树有两种存储方式顺序存储,和链式存储,顺序存储就是用数组来存,这个定义没啥可说的,我们来看看链式存储的二叉树节点的定义方式。
public class TreeNode {
int val;
TreeNode left;
TreeNode right;
TreeNode() {}
TreeNode(int val) { this.val = val; }
TreeNode(int val, TreeNode left, TreeNode right) {
this.val = val;
this.left = left;
this.right = right;
}
}
大家会发现二叉树的定义 和链表是差不多的,相对于链表 ,二叉树的节点里多了一个指针, 有两个指针,指向左右孩子。
这里要提醒大家要注意二叉树节点定义的书写方式。
在现场面试的时候 面试官可能要求手写代码,所以数据结构的定义以及简单逻辑的代码一定要锻炼白纸写出来。
因为我们在刷leetcode的时候,节点的定义默认都定义好了,真到面试的时候,需要自己写节点定义的时候,有时候会一脸懵逼!
总结
二叉树是一种基础数据结构,在算法面试中都是常客,也是众多数据结构的基石。
本篇我们介绍了二叉树的种类、存储方式、遍历方式以及定义,比较全面的介绍了二叉树各个方面的重点,帮助大家扫一遍基础。
说到二叉树,就不得不说递归,很多同学对递归都是又熟悉又陌生,递归的代码一般很简短,但每次都是一看就会,一写就废。
最最重要的递归一定要解决.
二叉树的递归遍历
思路
这次我们要好好谈一谈递归,为什么很多同学看递归算法都是“一看就会,一写就废”。
主要是对递归不成体系,没有方法论,每次写递归算法 ,都是靠玄学来写代码,代码能不能编过都靠运气。
本篇将介绍前后中序的递归写法,一些同学可能会感觉很简单,其实不然,我们要通过简单题目把方法论确定下来,有了方法论,后面才能应付复杂的递归。
这里帮助大家确定下来递归算法的三个要素。每次写递归,都按照这三要素来写,可以保证大家写出正确的递归算法!
- 确定递归函数的参数和返回值 确定哪些参数是递归的过程中需要处理的,那么就在递归函数里加上这个参数, 并且还要明确每次递归的返回值是什么进而确定递归函数的返回类型。
- 确定终止条件 写完了递归算法, 运行的时候,经常会遇到栈溢出的错误,就是没写终止条件或者终止条件写的不对,操作系统也是用一个栈的结构来保存每一层递归的信息,如果递归没有终止,操作系统的内存栈必然就会溢出。
- 确定单层递归的逻辑 确定每一层递归需要处理的信息。在这里也就会重复调用自己来实现递归的过程。
好了,我们确认了递归的三要素,接下来就来练练手:
前序遍历
前序遍历的算法思路:
若二叉树为空,什么都不做,否则:
i、先访问根结点;
ii、再前序遍历左子树;
iii、最后前序遍历右子树;
以下以前序遍历为例:
- 确定递归函数的参数和返回值:因为要打印出前序遍历节点的数值,所以参数里需要传入List res来放节点的数值,以及当前节点,TreeNode node,除了这一点就不需要再处理什么数据了也不需要有返回值,所以递归函数返回类型就是void,代码如下:
private void traversal(TreeNode node,List<Integer> res)
{
}
- 确定终止条件:在递归的过程中,如何算是递归结束了呢,当然是当前遍历的节点是空了,那么本层递归就要结束了,所以如果当前遍历的这个节点是空,就直接return,代码如下:
if(node==null){
return;
}
- 确定单层递归的逻辑:前序遍历是中左右的顺序,所以在单层递归的逻辑,是要先取中节点的数值,代码如下:
//此时node已经不为空了
//1.存储当前节点
res.add(node.val);
//2.遍历左子树
traversal(node.left,res);
//3.遍历右子树
traversal(node.right,res);
单层递归的逻辑就是按照中左右的顺序来处理的,这样二叉树的前序遍历,基本就写完了,再看一下完整代码:
/**
* @Description 前序遍历(中左右)
* @Param root
* @Return {@link List< Integer>}
* @Author 君君
* @Date 2024/7/3 23:41
*/
public List<Integer> preorderTraversal(TreeNode root) {
List<Integer> res = new ArrayList<>();
traversal(root,res);
return res;
}
/**
* @Description 递归的入口
* @Param node
* @Param res
* @Return
* @Author 君君
* @Date 2024/7/3 23:38
*/
private void traversal(TreeNode node,List<Integer> res){
if(node==null)
{
return;
}
res.add(node.val);
traversal(node.left,res);
traversal(node.right,res);
}
时间复杂度O(N)
空间复杂度O(N)
后序遍历
后序遍历的算法思路:
若二叉树为空,什么都不做,否则:
i、先后序遍历左子树;
ii、再后序遍历右子树;
iii、最后访问根结点;
以下以后序遍历为例:
- 确定递归函数的参数和返回值:因为要打印出后序遍历节点的数值,所以参数里需要传入List res来放节点的数值,以及当前节点,TreeNode node,除了这一点就不需要再处理什么数据了也不需要有返回值,所以递归函数返回类型就是void,代码如下:
private void traversal(TreeNode node,List<Integer> res)
{
}
- 确定终止条件:在递归的过程中,如何算是递归结束了呢,当然是当前遍历的节点是空了,那么本层递归就要结束了,所以如果当前遍历的这个节点是空,就直接return,代码如下:
if(node==null){
return;
}
- 确定单层递归的逻辑:后序遍历是左右中的顺序,所以在单层递归的逻辑,是要先取左节点的数值,代码如下:
//此时node已经不为空了
//1.遍历左子树
traversal(node.left,res);
//2.遍历右子树
traversal(node.right,res);
//3.存储当前节点
res.add(node.val);
单层递归的逻辑就是按照左右中的顺序来处理的,这样二叉树的后序遍历,基本就写完了,再看一下完整代码:
/**
* @Description 后序遍历
* @Param root
* @Return {@link List< Integer>}
* @Author 君君
* @Date 2024/7/3 23:53
*/
public List<Integer> postorderTraversal(TreeNode root) {
List<Integer> res = new ArrayList<>();
traversal(root,res);
return res;
}
/**
* @Description 后序遍历,左右中
* @Param node
* @Param res
* @Return
* @Author 君君
* @Date 2024/7/3 23:51
*/
private void traversal(TreeNode node,List<Integer> res)
{
if(node==null)
{
return;
}
traversal(node.left,res);
traversal(node.right,res);
res.add(node.val);
}
时间复杂度O(N)
空间复杂度O(N)
中序遍历
中序遍历的算法思路:
若二叉树为空,什么都不做,否则:
i、先中序遍历左子树;
ii、再访问根结点;
iii、最后中序遍历右子树;
以下以中序遍历为例:
- 确定递归函数的参数和返回值:因为要打印出中序遍历节点的数值,所以参数里需要传入List res来放节点的数值,以及当前节点,TreeNode node,除了这一点就不需要再处理什么数据了也不需要有返回值,所以递归函数返回类型就是void,代码如下:
private void traversal(TreeNode node,List<Integer> res)
{
}
- 确定终止条件:在递归的过程中,如何算是递归结束了呢,当然是当前遍历的节点是空了,那么本层递归就要结束了,所以如果当前遍历的这个节点是空,就直接return,代码如下:
if(node==null){
return;
}
- 确定单层递归的逻辑:中序遍历是左中右的顺序,所以在单层递归的逻辑,是要先取左节点的数值,代码如下:
//此时node已经不为空了
//1.遍历左子树
traversal(node.left,res);
//2.存储当前节点
res.add(node.val);
//3.遍历右子树
traversal(node.right,res);
单层递归的逻辑就是按照左中右的顺序来处理的,这样二叉树的中序遍历,基本就写完了,再看一下完整代码:
public List<Integer> inorderTraversal(TreeNode root) {
List<Integer> res = new ArrayList<>();
traversal(root,res);
return res;
}
/**
* @Description 中序遍历, 左中右
* @Param node
* @Param res
* @Return
* @Author 君君
* @Date 2024/7/3 23:59
*/
private void traversal(TreeNode node,List<Integer> res)
{
if(node == null)
{
return;
}
traversal(node.left,res);
res.add(node.val);
traversal(node.right,res);
}
时间复杂度O(N)
空间复杂度O(N)
二叉树的迭代遍历
思路
为什么可以用迭代法(非递归的方式)来实现二叉树的前后中序遍历呢?
我们在栈与队列:匹配问题都是栈的强项 (opens new window)中提到了,递归的实现就是:每一次递归调用都会把函数的局部变量、参数值和返回地址等压入调用栈中,然后递归返回的时候,从栈顶弹出上一次递归的各项参数,所以这就是递归为什么可以返回上一层位置的原因。
此时大家应该知道我们用栈也可以是实现二叉树的前后中序遍历了。
前序遍历(迭代法)
我们先看一下前序遍历。
前序遍历是中左右,每次先处理的是中间节点,那么先将根节点放入栈中,然后将右孩子加入栈,再加入左孩子。
为什么要先加入 右孩子,再加入左孩子呢? 因为这样出栈的时候才是中左右的顺序。
动画如下:
不难写出如下代码: (注意代码中空节点不入栈)
/**
* @Description 前序遍历(迭代法)
* 空节点不入栈
* @Param root
* @Return {@link List< Integer>}
* @Author 君君
* @Date 2024/7/4 0:14
*/
public List<Integer> preorderTraversal(TreeNode root) {
List<Integer> res = new ArrayList<>();
if(root==null)
{
return res;
}
Stack<TreeNode> stack = new Stack<>();
//将头结点入栈
stack.push(root);
while(!stack.isEmpty()){
//当前节点(这里先出栈的就是左子树)
TreeNode node = stack.pop();
res.add(node.val);
//先将右子树放入栈,
if(node.right!=null)
{
stack.push(node.right);
}
//再将左子树入栈
if(node.left!=null)
{
stack.push(node.left);
}
}
return res;
}
此时会发现貌似使用迭代法写出前序遍历并不难,确实不难。
此时是不是想改一点前序遍历代码顺序就把中序遍历搞出来了?
其实还真不行!
但接下来,再用迭代法写中序遍历的时候,会发现套路又不一样了,目前的前序遍历的逻辑无法直接应用到中序遍历上。
中序遍历(迭代法)
为了解释清楚,我说明一下 刚刚在迭代的过程中,其实我们有两个操作:
- 处理:将元素放进result数组中
- 访问:遍历节点
分析一下为什么刚刚写的前序遍历的代码,不能和中序遍历通用呢,因为前序遍历的顺序是中左右,先访问的元素是中间节点,要处理的元素也是中间节点,所以刚刚才能写出相对简洁的代码,因为要访问的元素和要处理的元素顺序是一致的,都是中间节点。
那么再看看中序遍历,中序遍历是左中右,先访问的是二叉树顶部的节点,然后一层一层向下访问,直到到达树左面的最底部,再开始处理节点(也就是在把节点的数值放进result数组中),这就造成了处理顺序和访问顺序是不一致的。
那么在使用迭代法写中序遍历,就需要借用指针的遍历来帮助访问节点,栈则用来处理节点上的元素。
/**
* @Description 中序遍历(迭代法)
* @Param root
* @Return {@link List< Integer>}
* @Author 君君
* @Date 2024/7/4 0:30
*/
public List<Integer> inorderTraversal(TreeNode root){
List<Integer> res = new ArrayList<>();
if (root == null){
return res;
}
Stack<TreeNode> stack = new Stack<>();
//用一个指针来记录当前节点,因为中序遍历,节点值不能先被记录,所以要保存当前节点,
//等左子树遍历完成之后就可以记录当前节点,然后再遍历右子树
//当前节点存储在栈中
TreeNode cur = root;
//只要当前节点不为空,或者栈不为空则继续遍历
while(cur!=null|| !stack.isEmpty()){
//如果当前节点不为空,则先将当前节点放入栈中存储
if (cur != null){
stack.push(cur);
cur = cur.left;
}
//如果当前节点为空,则记录当前节点的上一个节点值,就是中序遍历的中点值
else{
cur = stack.pop();
res.add(cur.val);
//记录完值之后遍历右子树
cur = cur.right;
}
}
return res;
}
后序遍历(迭代法)
再来看后序遍历,先序遍历是中左右,后序遍历是左右中,那么我们只需要调整一下先序遍历的代码顺序,就变成中右左的遍历顺序,然后在反转result数组,输出的结果顺序就是左右中了,如下图:
所以后序遍历只需要前序遍历的代码稍作修改就可以了,代码如下:
/**
* @Description 后序遍历(迭代法)
* 后序遍历顺序 左-右-中 入栈顺序:中-左-右 出栈顺序:中-右-左,
* 最后翻转结果,重点就在于最后翻转结果
* @Param root
* @Return {@link List< Integer>}
* @Author 君君
* @Date 2024/7/4 0:38
*/
public List<Integer> postorderTraversal(TreeNode root){
List<Integer> res = new ArrayList<>();
if(root==null){
return res;
}
Stack<TreeNode> stack = new Stack<>();
stack.push(root);
while(!stack.isEmpty())
{
//找到当前节点
TreeNode temp = stack.pop();
//入节点值
res.add(temp.val);
if(temp.left!=null)
{
stack.push(temp.left);
}
if(temp.right!=null)
{
stack.push(temp.right);
}
}
//res本来存储的结果是中右左,然而我们要的是左右中,所以要反转链表.
Collections.reverse(res);
return res;
}
总结
此时我们用迭代法写出了二叉树的前后中序遍历,大家可以看出前序和中序是完全两种代码风格,并不像递归写法那样代码稍做调整,就可以实现前后中序。
这是因为前序遍历中访问节点(遍历节点)和处理节点(将元素放进result数组中)可以同步处理,但是中序就无法做到同步!
上面这句话,可能一些同学不太理解,建议自己亲手用迭代法,先写出来前序,再试试能不能写出中序,就能理解了。
那么问题又来了,难道二叉树前后中序遍历的迭代法实现,就不能风格统一么(即前序遍历改变代码顺序就可以实现中序 和 后序)?
当然可以,这种写法,还不是很好理解,我们将在下一篇文章里重点讲解,敬请期待!
二叉树的统一迭代法
思路
此时我们在二叉树:一入递归深似海,从此offer是路人 (opens new window)中用递归的方式,实现了二叉树前中后序的遍历。
在二叉树:听说递归能做的,栈也能做! (opens new window)中用栈实现了二叉树前后中序的迭代遍历(非递归)。
之后我们发现迭代法实现的先中后序,其实风格也不是那么统一,除了先序和后序,有关联,中序完全就是另一个风格了,一会用栈遍历,一会又用指针来遍历。
实践过的同学,也会发现使用迭代法实现先中后序遍历,很难写出统一的代码,不像是递归法,实现了其中的一种遍历方式,其他两种只要稍稍改一下节点顺序就可以了。
其实针对三种遍历方式,使用迭代法是可以写出统一风格的代码!
重头戏来了,接下来介绍一下统一写法。
我们以中序遍历为例,在二叉树:听说递归能做的,栈也能做! (opens new window)中提到说使用栈的话,无法同时解决访问节点(遍历节点)和处理节点(将元素放进结果集)不一致的情况。
那我们就将访问的节点放入栈中,把要处理的节点也放入栈中但是要做标记。
如何标记呢,就是要处理的节点放入栈之后,紧接着放入一个空指针作为标记。 这种方法也可以叫做标记法。
中序遍历
中序遍历代码如下:(详细注释)
/**
* @Description 中序遍历(统一迭代法)
* @Param root
* @Return {@link List< Integer>}
* @Author 君君
* @Date 2024/7/4 1:22
*/
public List<Integer> inorderTraversal(TreeNode root){
List<Integer> res = new ArrayList<>();
if(root==null)
{
return res;
}
Stack<TreeNode> stack = new Stack<>();
stack.push(root);
while(!stack.isEmpty())
{
//找到当前栈顶元素
TreeNode temp = stack.peek();
if(temp != null)
{
//将该节点弹出,避免重复计算
stack.pop();
//将右子树入栈
if(temp.right!=null){
stack.push(temp.right);
}
//将中间节点入栈
stack.push(temp);
//但是对没有处理的节点要加入null节点
stack.push(null);
//将左子树入栈
if(temp.left!=null){
stack.push(temp.left);
}
}
//如果当前栈顶元素为null,则下一个元素就是我们要处理的元素
else{
//将空节点弹出
stack.pop();
//弹出要处理的节点,并进行处理
res.add(stack.pop().val);
}
}
return res;
}
前序遍历
前序遍历代码如下:
/**
* @Description 前序遍历(统一迭代法)
* @Param root
* @Return {@link List< Integer>}
* @Author 君君
* @Date 2024/7/4 1:38
*/
public List<Integer> preorderTraversal(TreeNode root){
List<Integer> res = new ArrayList<>();
if (root==null)
{
return res;
}
Stack<TreeNode> stack = new Stack<>();
stack.push(root);
while(!stack.isEmpty()){
TreeNode temp = stack.peek();
if(temp!=null)
{
stack.pop();
if(temp.right!=null)
{
stack.add(temp.right);
}
if(temp.left!=null)
{
stack.add(temp.left);
}
stack.add(temp);
stack.add(null);
}
else{
stack.pop();
res.add(stack.pop().val);
}
}
return res;
}
后序遍历
后序遍历代码如下:
/**
* @Description 后序遍历(统一迭代法)
* @Param root
* @Return {@link List< Integer>}
* @Author 君君
* @Date 2024/7/4 1:49
*/
public List<Integer> postorderTraversal(TreeNode root){
List<Integer> res = new ArrayList<>();
if (root==null)
{
return res;
}
Stack<TreeNode> stack = new Stack<>();
stack.push(root);
while(!stack.isEmpty()){
TreeNode temp = stack.peek();
if(temp!=null)
{
stack.pop();
stack.add(temp);
stack.add(null);
if(temp.right!=null)
{
stack.add(temp.right);
}
if(temp.left!=null)
{
stack.add(temp.left);
}
}
else{
stack.pop();
res.add(stack.pop().val);
}
}
return res;
}
102.二叉树的层序遍历
给你二叉树的根节点 root
,返回其节点值的 层序遍历 。 (即逐层地,从左到右访问所有节点)。
示例 1:
输入:root = [3,9,20,null,null,15,7]
输出:[[3],[9,20],[15,7]]
示例 2:
输入:root = [1]
输出:[[1]]
示例 3:
输入:root = []
输出:[]
提示:
- 树中节点数目在范围
[0, 2000]
内 -1000 <= Node.val <= 1000
Related Topics
-
树
-
广度优先搜索
-
二叉树
思路
层序遍历一个二叉树。就是从左到右一层一层的去遍历二叉树。这种遍历的方式和我们之前讲过的都不太一样。
需要借用一个辅助数据结构即队列来实现,队列先进先出,符合一层一层遍历的逻辑,而用栈先进后出适合模拟深度优先遍历也就是递归的逻辑。
而这种层序遍历方式就是图论中的广度优先遍历,只不过我们应用在二叉树上。
使用队列实现二叉树广度优先遍历,动画如下:
这样就实现了层序从左到右遍历二叉树。
代码如下:这份代码也可以作为二叉树层序遍历的模板,打十个就靠它了。
迭代法实现
/**
* @Description 二叉树的层序遍历
* @Param root
* @Return {@link List< List< Integer>>}
* @Author 君君
* @Date 2024/7/4 1:56
*/
public List<List<Integer>> levelOrder(TreeNode root) {
List<List<Integer>> res = new ArrayList<>();
if(root==null) {
return res;
}
//创建一个队列用于遍历二叉树
Deque<TreeNode> deque= new LinkedList<>();
deque.offer(root);
while(!deque.isEmpty()){
List<Integer> res1 = new ArrayList<>();
int length = deque.size();
for (int i = 0; i <length ; i++) {
TreeNode temp = deque.poll();
res1.add(temp.val);
if(temp.left!=null)
{
deque.offer(temp.left);
}
if(temp.right!=null)
{
deque.offer(temp.right);
}
}
res.add(res1);
}
return res;
}
时间复杂度O(N)
空间复杂度O(N)
递归法实现
- 确定递归函数的参数和返回值:我们只需要给一个固定的数组添加元素就可以,但是需要把这个元素传入下一级List<List> res,还需要传入下一层的节点,最后是当前的深度(层数).代码如下:
private void checkFun01(List<List<Integer>> res ,TreeNode root,int x){
}
- 确定终止条件:在递归的过程中,如何算是递归结束了呢,当然是当前遍历的节点是空了,那么本层递归就要结束了,所以如果当前遍历的这个节点是空,就直接return,代码如下:
//递归的出口 如果当前节点是null,则返回上一层递归
if (root==null)
{
return;
}
- 确定单层递归的逻辑:中序遍历是左中右的顺序,所以在单层递归的逻辑,是要先取左节点的数值,代码如下:
//将当前层数增加一层
x+=1;
//当层级增加时,list的Item也增加,利用list的索引值进行层级界定
if(res.size()<x)
{
List<Integer> res1 = new ArrayList<>();
res.add(res1);
}
//添加当前节点
res.get(x-1).add(root.val);
//进入下一层递归
checkFun01(res ,root.left,x);
checkFun01(res ,root.right,x);
/**
* @Description 二叉树的层序遍历(递归解法)
* @Param root
* @Return {@link List< List< Integer>>}
* @Author 君君
* @Date 2024/7/4 2:37
*/
public List<List<Integer>> levelOrder(TreeNode root){
List<List<Integer>> res = new ArrayList<>();
if(root==null)
{
return res;
}
checkFun01(res,root,0);
return res;
}
/**
* @Description
* @Param res res用来存储遍历的结果
* @Param root 用来充当当前节点
* @Param x 为当前的层数
* @Return
* @Author 君君
* @Date 2024/7/4 2:44
*/
private void checkFun01(List<List<Integer>> res ,TreeNode root,int x){
//递归的出口 如果当前节点是null,则返回上一层递归
if (root==null)
{
return;
}
//将当前层数增加一层
x+=1;
//当层级增加时,list的Item也增加,利用list的索引值进行层级界定
if(res.size()<x)
{
List<Integer> res1 = new ArrayList<>();
res.add(res1);
}
//添加当前节点
res.get(x-1).add(root.val);
checkFun01(res ,root.left,x);
checkFun01(res ,root.right,x);
}
时间复杂度O(N)
空间复杂度O(N)