STM32-Unix时间戳和BKP备份寄存器以及RTC实时时钟

本内容基于江协科技STM32视频学习之后整理而得。

文章目录

  • 1. Unix时间戳
    • 1.1 Unix时间戳简介
    • 1.2 UTC/GMT
    • 1.3 时间戳转换
  • 2. BKP备份寄存器
    • 2.1 BKP简介
    • 2.2 BKP基本结构
    • 2.3 BKP库函数
  • 3. RTC实时时钟
    • 3.1 RTC简介
    • 3.2 RTC框图
    • 3.3 RTC基本结构
    • 3.4 硬件电路
    • 3.5 RTC操作注意事项
    • 3.6 RTC库函数

1. Unix时间戳

1.1 Unix时间戳简介

  • Unix 时间戳(Unix Timestamp)定义为从UTC/GMT的1970年1月1日0时0分0秒开始所经过的秒数,不考虑闰秒
  • 时间戳存储在一个秒计数器中,秒计数器为32位/64位的整型变量
  • 世界上所有时区的秒计数器相同,不同时区通过添加偏移来得到当地时间

image.png

1.2 UTC/GMT

  • GMT(Greenwich Mean Time)格林尼治标准时间是一种以地球自转为基础的时间计量系统。它将地球自转一周的时间间隔等分为24小时,以此确定计时标准
  • UTC(Universal Time Coordinated)协调世界时是一种以原子钟为基础的时间计量系统。它规定铯133原子基态的两个超精细能级间在零磁场下跃迁辐射9,192,631,770周所持续的时间为1秒。当原子钟计时一天的时间与地球自转一周的时间相差超过0.9秒时,UTC会执行闰秒来保证其计时与地球自转的协调一致

1.3 时间戳转换

C语言的time.h模块提供了时间获取和时间戳转换的相关函数,可以方便地进行秒计数器、日期时间和字符串之间的转换

函数作用
time_t time(time_t*);获取系统时钟
struct tm* gmtime(const time_t*);秒计数器转换为日期时间(格林尼治时间)
struct tm* localtime(const time_t*);秒计数器转换为日期时间(当地时间)
time_t mktime(struct tm*);日期时间转换为秒计数器(当地时间)
char* ctime(const time_t*);秒计数器转换为字符串(默认格式)
char* asctime(const struct tm*);日期时间转换为字符串(默认格式)
size_t strftime(char*, size_t, const char*, const struct tm*);日期时间转换为字符串(自定义格式)

image.png

2. BKP备份寄存器

2.1 BKP简介

  • BKP(Backup Registers)备份寄存器

  • BKP可用于存储用户应用程序数据。当VDD(2.03.6V)电源被切断,他们仍然由VBAT(1.83.6V)维持供电。当系统在待机模式下被唤醒,或系统复位或电源复位时,他们也不会被复位

  • TAMPER引脚产生的侵入事件将所有备份寄存器内容清除

  • RTC引脚输出RTC校准时钟、RTC闹钟脉冲或者秒脉冲

  • 存储RTC时钟校准寄存器

  • 用户数据存储容量:

    20字节(中容量和小容量)/ 84字节(大容量和互联型)
    在STM32引脚定义图中,标红色的都是供电引脚,VDD和VSS_1、2、3是内部数字部分电路的供电。VDDA和VSSA是内部模拟部分电路的供电。该四组以VDD开头的供电,都是系统的主电源。在正常使用STM32时,这四组供电
    全部都需要接到3.3V的电源上。VBAT是备用电池供电引脚,如果要使用STM32内部的BKP和RTC,该引脚必须接备用电池。用来维持BKP和RTC在VDD主电源掉电后的供电。备用电池只有一根正极的供电引脚,接电池时,电池正极接到VBAT,电池负极和主电源的负极接在一起供地。

2.2 BKP基本结构

image.png

  • 橙色区域可以称为后备区域,功能是当VDD主电源掉电时,后备区域仍然可以由VBAT的备用电池供电。当VDD主电源上电时,后备区域供电会由VBAT切换到VDD。也就是,主电源有电时,VBAT不会用到,这样可以节省电池电量。
  • BKP位于后备区域。BKP主要有数据寄存器、控制寄存器、状态寄存器和RTC时钟校准寄存器。数据寄存器是主要部分,用来存储数据的。每个数据寄存器都是16位的,一个数据寄存器可以存2个字节。中小容量的有DR1~DR10,所以容量是20字节。
  • TAMPER侵入检测,当产生上升沿和下降沿时,清除BKP所有的内容,以保证安全。
  • 时钟输出,可以从PC13位置的RTC引脚输出出去,供外部使用。当输出校准时钟时,再配合校准寄存器,可以对RTC的误差进行校准。

2.3 BKP库函数

// 缺省配置,手动清空BKP所有的数据寄存器
void BKP_DeInit(void);
// 配置TAMPER侵入检测的,配置引脚的高低电平
void BKP_TamperPinLevelConfig(uint16_t BKP_TamperPinLevel);
// 是否开启侵入检测功能
void BKP_TamperPinCmd(FunctionalState NewState);
// 中断配置
void BKP_ITConfig(FunctionalState NewState);
// 时钟输出
void BKP_RTCOutputConfig(uint16_t BKP_RTCOutputSource);
// 设置RTC校准值
void BKP_SetRTCCalibrationValue(uint8_t CalibrationValue);
// 写BKP,BKP_DR是指定写在哪个DR里,Data:写入的数据
void BKP_WriteBackupRegister(uint16_t BKP_DR, uint16_t Data);
// 读BKP,BKP_DR是要读哪个DR
uint16_t BKP_ReadBackupRegister(uint16_t BKP_DR);

FlagStatus BKP_GetFlagStatus(void);
void BKP_ClearFlag(void);
ITStatus BKP_GetITStatus(void);
void BKP_ClearITPendingBit(void);

// BKP访问使能,设置PWR_CR寄存器里的DBP位,
void PWR_BackupAccessCmd(FunctionalState NewState);

3. RTC实时时钟

3.1 RTC简介

  • RTC(Real Time Clock)实时时钟
  • RTC是一个独立的定时器,可为系统提供时钟和日历的功能
  • RTC和时钟配置系统处于后备区域,系统复位时数据不清零,VDD(2.0~3.6V)断电后可借助VBAT(1.8-3.6V)供电继续走时
  • 32位的可编程计数器,可对应Unix时间戳的秒计数器
  • 20位的可编程预分频器,可适配不同频率的输入时钟
  • 可选择三种RTC时钟源:
    • HSE时钟除以128(通常为8MHz/128):主要作为系统主时钟,主电源掉电后,停止运行
    • LSE振荡器时钟(通常为32.768KHz):主要用于RTC,可以通过VBAT备用电池供电
    • LSI振荡器时钟(40KHz):主要用于看门狗时钟,主电源掉电后,停止运行

HSE=高速外部时钟信号
HSI=高速内部时钟信号
LSI=低速内部时钟信号
LSE=低速外部时钟信号
高速时钟:一般供内部程序运行和主要外设使用;
低速时钟:一般供RTC、看门狗使用;

3.2 RTC框图

image.png

  • 左下角灰色区域是核心的分频和计数计时部分。右边是中断输出使能和NVIC部分。上面是APB1总线读写部分。下面是和PWR关联的部分,就是RTC的闹钟可以唤醒设备,退出待机模式,
    图中的灰色区域都是后备区域,在主电源掉电后,可以使用备用电池维持工作。另外这些模块在待机时都会继续维持供电。其他未被填充的部分,就是待机时不供电。
  • 分频和计数计时部分的时钟是RTCCLK,RTCCLK的时钟来源可以在RCC里配置,就是选择HSE、LSE、LSI,但由于该时钟都大于1Hz,因此,RTCCLK进来后首先经过RTC预分频器进行分频。该分频器由两个寄存器组成,上面是重装载寄存器RTC_PRL,下面是RTC_DIV余数寄存器,是计数器的作用。RTC_PRL是计数目标,写入6就是7分频,RTC_DIV是每来一个时钟计一个数,是一个自减计数器,每来一个输入时钟,DIV自减一次,自减到0时,再来一个输入时钟,DIV输出一个脉冲,产生溢出信号。同时DIV从PRL获取重装值,回到重装值继续自减。
  • 32位的可编程计数器,可看作Unix时间戳的秒计数器,借用time.h的函数,就可以得到年月日时分秒。闹钟寄存器RTC_ALR,是一个32位的寄存器,和CNT是等宽的。可以在ALR写一个秒数,设定闹钟,当CNT的值和ALR设定的闹钟值一样时,就代表闹钟响了。这时就会产生RTC_Alarm闹钟信号,通往右边的中断系统。该闹钟信号可以让STM32退出待机模式。闹钟值是一个定值,只能响一次。
  • RTC_Second是秒中断,来源是CNT的左边,开启该中断,程序就会每秒进一次RTC中断。
  • RTC_Overflow溢出中断,来源是CNT的右边,当CNT的32位计数器计满溢出了,会触发一次中断,该中断一般不会触发。因为CNT定义的是无符号数,到2106年才会溢出。
  • RTC_CR中断:F结尾的是对应的中断标志位,IE结尾的是中断使能。三个信号通过一个或门汇聚到NVIC中断控制器。
  • APB1总线和APB1接口是程序读写寄存器的。
  • WKUP引脚和闹钟信号都可以唤醒设备。

3.3 RTC基本结构

image.png

3.4 硬件电路

image.png

3.5 RTC操作注意事项

  • 执行以下操作将使能对BKP和RTC的访问:
    • 设置RCC_APB1ENR的PWREN和BKPEN,使能PWR和BKP时钟
    • 设置PWR_CR的DBP,使能对BKP和RTC的访问
  • 若在读取RTC寄存器时,RTC的APB1接口曾经处于禁止状态,则软件首先必须等待RTC_CRL寄存器中的RSF位(寄存器同步标志)被硬件置1。
  • 必须设置RTC_CRL寄存器中的CNF位,使RTC进入配置模式后,才能写入RTC_PRL、RTC_CNT、RTC_ALR寄存器。
  • 对RTC任何寄存器的写操作,都必须在前一次写操作结束后进行。可以通过查询RTC_CR寄存器中的RTOFF状态位,判断RTC寄存器是否处于更新中。仅当RTOFF状态位是1时,才可以写入RTC寄存器。

3.6 RTC库函数

// 配置LSE外部低速时钟
void RCC_LSEConfig(uint8_t RCC_LSE);
// 配置LSI内部低速时钟
void RCC_LSICmd(FunctionalState NewState);
// 选择RTCCLK的时钟源,即PPT上的数据选择器
void RCC_RTCCLKConfig(uint32_t RCC_RTCCLKSource);
// 启动RTCCLK
void RCC_RTCCLKCmd(FunctionalState NewState);
// 获取标志位,调用RCC_LSEConfig之后,还要等待一下标志位
// 等RCC中的标志位LSERDY置1后,时钟才算启动完成,工作稳定
FlagStatus RCC_GetFlagStatus(uint8_t RCC_FLAG);

// 配置中断
void RTC_ITConfig(uint16_t RTC_IT, FunctionalState NewState);
// 进入配置模式,置CRL的CNF为1,进入配置模式
void RTC_EnterConfigMode(void);
// 退出配置模式,把CNF位清零
void RTC_ExitConfigMode(void);
// 获取计数器的值,用于获取时钟
uint32_t  RTC_GetCounter(void);
// 写入CNT的值,用于设置时间
void RTC_SetCounter(uint32_t CounterValue);
// 写入预分频器,写入到PRL中,用于配置预分频器的分频系数
void RTC_SetPrescaler(uint32_t PrescalerValue);
// 写入闹钟值
void RTC_SetAlarm(uint32_t AlarmValue);
// 读取预分频器中的DIV余数寄存器,一般是为了得到更细致的时间
uint32_t  RTC_GetDivider(void);
// 等待上次操作完成,循环直到RTOFF状态位为1
void RTC_WaitForLastTask(void);
// 等待同步,清除RSF标志位,然后循环,直到RSF为1
void RTC_WaitForSynchro(void);

FlagStatus RTC_GetFlagStatus(uint16_t RTC_FLAG);
void RTC_ClearFlag(uint16_t RTC_FLAG);
ITStatus RTC_GetITStatus(uint16_t RTC_IT);
void RTC_ClearITPendingBit(uint16_t RTC_IT);


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/780541.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

elementui中日期/时间的禁用处理,使用传值的方式

项目中,经常会用到 在一个学年或者一个学期或者某一个时间段需要做的某件事情,则我们需要在创建这个事件的时候,需要设置一定的时间周期,那这个时间周期就需要给一定的限制处理,避免用户的误操作,优化用户体验 如下:需求为,在选择学年后,学期的设置需要在学年中,且结束时间大…

C#反射基本应用

1、反射 反射是.NET Framework的一个特性,它允许在运行时获取类型的信息以及动态创建对象,调用方法,以及访问字段和属性。 2、代码 using System; using System.Collections.Generic; using System.Linq; using System.Reflection; using Sy…

快速搭建发卡独立站(完全免费)

本文介绍如何使用开源项目,零成本,无需服务器的方式搭建一套自己的数字商品/发卡独立站,不需要任何开发能力,即便是小白用户也能搭建。 感兴趣可直接查看开源项目地址👉 https://github.com/iDataRiver/theme-basic …

【全面介绍下如何使用Zoom视频会议软件!】

🎥博主:程序员不想YY啊 💫CSDN优质创作者,CSDN实力新星,CSDN博客专家 🤗点赞🎈收藏⭐再看💫养成习惯 ✨希望本文对您有所裨益,如有不足之处,欢迎在评论区提出…

C语言_数据的存储

数据类型介绍 1. 整形家族 //字符存储的时候,存储的是ASCII值,是整型 //char 默认是unsigned char还是signed char标准没有规定,其他类型都默认是signed char,unsigned char,signed char short,unsigned s…

Fast R-CNN(论文阅读)

论文名:Fast R-CNN 论文作者:Ross Girshick 期刊/会议名:ICCV 2015 发表时间:2015-9 ​论文地址:https://arxiv.org/pdf/1504.08083 源码:https://github.com/rbgirshick/fast-rcnn 摘要 这篇论文提出了一…

Mobile ALOHA: 你需不需要一个能做家务的具身智能机器人

相信做机器人的朋友最近一段时间一定被斯坦福华人团队这个Mobile ALOHA的工作深深所震撼,这个工作研究了一个能做饭,收拾衣服,打扫卫生的服务机器人,完成了传统机器人所不能完成的诸多任务,向大家展示了服务机器人的美…

建投数据入选“2024年中国最佳信创企业管理软件厂商”

近日,建投数据凭借国产化自主知识产权、完备的信创资质及信创软硬件环境全栈适配能力,入选第一新声联合天眼查发布的“2024年中国最佳信创厂商系列榜单”细分行业榜之“最佳信创企业管理软件厂商”。 本次最佳信创厂商系列榜单评选,包括综合榜…

阶段三:项目开发---搭建项目前后端系统基础架构:QA:可能遇到的问题及解决方案

任务实现 常见问题1:文件监视程序的系统限制。 1、错误提示:如果在Vue项目中,使用【 npm run serve】运行kongguan_web项目时报以下错误: 2、产生原因:文件监视程序的系统产生了限制,达到了默认的上限&am…

spring-ai 下载不了依赖spring-ai-openai-spring-boot-starter

第1坑:配置第三方仓库不生效, 提示在阿里云仓库没有找到 spring-ai-openai-spring-boot-starter 第2坑:升级jdk17后,springboot项目启动报错 Internal error (java.lang.reflect.InaccessibleObjectException): Unable to make pr…

1.Python学习笔记

一、环境配置 1.Python解释器 把程序员用编程语言编写的程序,翻译成计算机可以执行的机器语言 安装: 双击Python3.7.0-选择自定义安装【Customize installation】-勾选配置环境变量 如果没有勾选配置环境变量,输入python就会提示找不到命令…

Codeforces Round 955 E. Number of k-good subarrays【分治、记忆化】

E. Number of k-good subarrays 题意 定义 b i t ( x ) bit(x) bit(x) 为 x x x 的二进制表示下 1 1 1 的数量 一个数组的子段被称为 k − g o o d k-good k−good 的当且仅当:对于这个子段内的每个数 x x x,都有 b i t ( x ) ≤ k bit(x) \leq k…

阿里通义音频生成大模型 FunAudioLLM 开源!

01 导读 人类对自身的研究和模仿由来已久,在我国2000多年前的《列子汤问》里就描述了有能工巧匠制作出会说话会舞动的类人机器人的故事。声音包含丰富的个体特征及情感情绪信息,对话作为人类最常使用亲切自然的交互模式,是连接人与智能世界…

【Docker系列】Docker 命令行输出格式化指南

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

《昇思25天学习打卡营第12天|onereal》

CycleGAN图像风格迁移互换 模型简介 CycleGAN(Cycle Generative Adversarial Network) 即循环对抗生成网络,来自论文 Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks 。该模型实现了一种在没有配对示例的情况下学习将图像从源域…

Ubuntu 安装CGAL

一、什么是CGAL CGAL(Computational Geometry Algorithms Library)是一个广泛使用的开源库,主要用于计算几何算法的实现。该库提供了一系列高效、可靠和易于使用的几何算法和数据结构,适用于各种应用领域。以下是 CGAL 的主要功能…

汽车报价资讯app小程序模板源码

蓝色实用的汽车报价,汽车新闻资讯,最新上市汽车资讯类小程序前端模板。包含:选车、资讯列表、榜单、我的主页、报价详情、资讯详情、询底价、登录、注册、车贷,油耗、意见反馈、关于我们等等。这是一款非常全的汽车报价小程序模板…

VMware CentOS7 Linux 网络配置

本文主要描述VMware虚拟机的网络配置。 如上所示,在CentOS Linux虚拟机中设置网络连接使用桥接模式,该模式对接主机物理网络,直接由主机的物理网络的DHCP服务器动态分配IP地址,或者在CentOS Linux的操作系统的网络配置中设置静态的…

Stowaway搭建隧道打CFS内网靶场

目录 渗透带出主机阶段 先把我们的服务端上传到kali ​先把我们的客户端上传到目标机 客户端去连接我们的kali机端口去上线 出现admin,上线成功 detail相当于msf的sessions​ 和msf差不多功能,但是我们用它主要是搞隧道代理 抓发的 ​开启socks…

SQL之delete、truncate和drop区别

MySQL删除数据的方式都有哪些? 常用的三种删除方式:通过 delete、truncate、drop 关键字进行删除;这三种都可以用来删除数据,但场景不同。 一、从执行速度上来说 drop > truncate >> DELETE;二、从原理上讲 1、DELET…