今日继续学习树莓派4B 4G:(Raspberry Pi,简称RPi或RasPi)
本人所用树莓派4B 装载的系统与版本如下:
版本可用命令 (lsb_release -a) 查询:
Opencv 版本是4.5.1:
Python 版本3.7.3:
今日学习:OpenCV舵机云台物体追踪 代码是 创乐博的,本文只作解释分析......
前置学习条件如下:
IIC驱动_PCA9685(16路舵机驱动模块) 文章网址 如下:
树莓派学习笔记18:IIC驱动_PCA9685(16路舵机驱动模块)-CSDN博客
Python多线程编程 文章网址 如下:
树莓派4B学习笔记14:Python多线程编程_线程间的同步通信_(锁‘threading.Lock’)_树莓派多线程-CSDN博客
文章提供测试代码讲解,整体代码贴出、测试效果图
目录
测试效果视频:
代码贴出:
例程测试步骤:
例程测试步骤相关工程下载:
网上查阅资料网址:
测试效果视频:
OpenCV舵机云台物体追踪
代码贴出:
# -*- coding: utf-8 -*- from __future__ import division import time import cv2 import numpy as np import Adafruit_PCA9685 import RPi.GPIO as GPIO import threading #初始化PCA9685和舵机 servo_pwm = Adafruit_PCA9685.PCA9685() # 实例化舵机云台 # 设置舵机初始值,可以根据自己的要求调试 servo_pwm.set_pwm_freq(60) # 设置频率为60HZ servo_pwm.set_pwm(5,0,325) # 底座舵机 servo_pwm.set_pwm(4,0,325) # 倾斜舵机 time.sleep(1) #初始化摄像头并设置阙值 usb_cap = cv2.VideoCapture(0) # 设置球体追踪的HSV值,上下限值 ball_yellow_lower=np.array([171,161,186]) ball_yellow_upper=np.array([178,188,255]) # 设置显示的分辨率,设置为320×240 px usb_cap.set(3, 320) usb_cap.set(4, 240) #舵机云台的每个自由度需要4个变量 pid_thisError_x=500 #当前误差值 pid_lastError_x=100 #上一次误差值 pid_thisError_y=500 pid_lastError_y=100 pid_x=0 pid_y=0 # 舵机的转动角度 pid_Y_P = 325 pid_X_P = 325 #转动角度 pid_flag=0 # initialize LED GPIO redLed = 18 # LED灯 GPIO.setwarnings(False) GPIO.setmode(GPIO.BCM) GPIO.setup(redLed, GPIO.OUT) # 舵机旋转 def Robot_servo(X_P,Y_P): servo_pwm.set_pwm(5,0,650-pid_X_P) servo_pwm.set_pwm(4,0,650-pid_Y_P) # 关闭LED GPIO.output(redLed, GPIO.LOW) ledOn = False # loop over the frames from the video stream while True: ret,frame = usb_cap.read() #高斯模糊处理 frame=cv2.GaussianBlur(frame,(5,5),0) hsv= cv2.cvtColor(frame,cv2.COLOR_BGR2HSV) #ROI及找到形态学找到小球进行处理 mask=cv2.inRange(hsv,ball_yellow_lower,ball_yellow_upper) # 掩膜处理 mask=cv2.erode(mask,None,iterations=2) mask=cv2.dilate(mask,None,iterations=2) mask=cv2.GaussianBlur(mask,(3,3),0) res=cv2.bitwise_and(frame,frame,mask=mask) cnts=cv2.findContours(mask.copy(),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)[-2] #发现小球 # only proceed if at least one contour was found if len(cnts) > 0: cap_cnt=max(cnts,key=cv2.contourArea) (pid_x,pid_y),radius=cv2.minEnclosingCircle(cap_cnt) cv2.circle(frame,(int(pid_x),int(pid_y)),int(radius),(255,0,255),2) # 误差值处理 pid_thisError_x=pid_x-160 pid_thisError_y=pid_y-120 #PID控制参数 pwm_x = pid_thisError_x*3+1*(pid_thisError_x-pid_lastError_x) pwm_y = pid_thisError_y*3+1*(pid_thisError_y-pid_lastError_y) #迭代误差值操作 pid_lastError_x = pid_thisError_x pid_lastError_y = pid_thisError_y pid_XP=pwm_x/100 pid_YP=pwm_y/100 # pid_X_P pid_Y_P 为最终PID值 pid_X_P=pid_X_P+int(pid_XP) pid_Y_P=pid_Y_P+int(pid_YP) GPIO.output(redLed, GPIO.HIGH) #限值舵机在一定的范围之内 if pid_X_P>650: pid_X_P=650 if pid_X_P<0: pid_X_P=0 if pid_Y_P>650: pid_Y_P=650 if pid_X_P<0: pid_Y_p=0 # 如果没有检测到球,关闭LED灯 else: GPIO.output(redLed, GPIO.LOW) servo_tid=threading.Thread(target=Robot_servo,args=(pid_X_P,pid_Y_P)) # 多线程 servo_tid.setDaemon(True) servo_tid.start() # 开启线程 cv2.imshow("MAKEROBO Robot", frame) # 显示图像 # 等待键盘输入,如果按下'q'则退出循环 key = cv2.waitKey(1) & 0xFF if key == ord('q'): break # do a bit of cleanup print("\n [INFO] Exiting Program and cleanup stuff \n") GPIO.cleanup() cv2.destroyAllWindows() usb_cap.stop()
例程测试步骤:
用到的程序会统一打包在文后下载
1、先拍摄一张照片,使用PS软件获取其BGR色域:78 54 208:
2、再转入HSV色域:(这是大致色域)
{165,100,100}
{185,255,255}
3、放入HSV程序进行微调:得到比较稳定色域:
{145,161,189}
{179,196,246}
4、将HSV色域填入程序:
然后就能进行测试了:
例程测试步骤相关工程下载:
https://download.csdn.net/download/qq_64257614/89521481?spm=1001.2014.3001.5503
网上查阅资料网址:
[树莓派基础]12.树莓派OpenCV舵机云台物体位置追踪_哔哩哔哩_bilibili