第3章.中央服务器的物联网模式--企业系统集成

        为了从物联网实施中获得最大价值,物联网系统需要与企业中的现有软件系统集成。事实上,与外部系统的集成允许网络世界和物理世界之间的交互——代表物理世界的物联网系统和驻留在网络/虚拟世界中的外部系统。用于此模式的符号如下图所示:

图3.12——外部系统集成模式的符号


        与任何一般集成的情况一样,物联网系统与另一个企业或遗留系统的集成所带来的好处远远超过了这些系统单独运行时的好处(整体大于各部分的总和)。集成可以实现端到端工作流的自动化,消除数据的重复性,提高决策质量,或消除依赖过时数据的可能性。
        物联网和其他企业系统之间的数据同步可以通过数据推送器或数据拉出器实现。这种集成的性质和级别将因域而异,也因用例而异。例如,与工业用例相比,家庭自动化用例往往不太需要与其他系统集成。由于物联网的实施实现了自动化,因此往往会取代或增强现有的工作流程、流程等,因此物联网数据需要插入现有的工作流和流程是很自然的。由于现有工作流是建立在现有或遗留系统之上的,因此迫切需要进行企业集成。
        调用集成逻辑的频率将取决于多个因素,例如用例需求和数据同步操作引入的开销。根据要求,同步可以在同步模式(实时同步)下进行,也可以在批处理模式下启用,在批处理方式下,操作以计划的频率和时间运行。通常,这种集成是在没有任何最终用户直接参与的情况下启用的。
物联网系统通常与以下类型的外部系统集成:

  • 客户关系管理(CRM)系统
  • 供应链管理系统
  • 商业智能和分析
  • 人力资源数据
  • 存储设备或用户元数据的系统
  • 企业资源规划系统

提供辅助信息(如天气信息或卫星图像)的系统,可以增强或完善物联网数据产生的见解
集成需求是通过调用企业系统公开的API来实现的。在这样的集成API不可用的场景中,会在遗留系统上创建一个包装器,然后可以封装遗留系统的细微差别。
外部系统可以对本地和全局规则引擎进行补充,如下图所示:

图3.13-与外部系统集成的需求可能存在于本地和全局规则引擎级别


物联网系统可以通过多种方式(取决于应用程序和用例需求)与其他外部系统集成。
尽管下图显示了与全局规则引擎的集成,但在本地规则引擎级别也可以进行类似的集成:

图3.14-可能与外部系统集成的类型


现在让我们来看一下模式摘要。
模式摘要
企业系统集成的模式总结如下:
解决的问题:
商业
将物联网数据与现有企业应用程序集成,其好处如下:
a) 更好的洞察力和决策能力
b) 更准确的业务见解
c) 由于数据核对工作减少而导致的成本或工作量减少
构思和开发更丰富、更具创新性的用例
通过自动化现有的工作流程和流程,相对于强制安装全新的工具、流程和工作流程,加速企业的数字化转型之旅
通过使用设备元数据(来自企业系统)实现数据清理和数据处理
技术的

  • 在系统之间同步数据
  • 多种集成选项的选择,如同步、定时、基于代理等
  • 实现数据级和应用程序级集成
  • 调度集成,用于在非高峰时段处理计算密集型工作负载
  • 实现实时和批量集成的灵活性
  • 使用基于代理的集成将核心物联网系统的演变与下游外部系统解耦
  • 尽快标记和修正不同系统之间的数据差距。
  • 用法上下文:
  • 物联网数据需要推送到现有的外部、企业或遗留系统。
  • 物联网数据需要通过从外部系统提取数据来丰富元数据。
  • 外部系统的工作流程从一个阶段过渡到另一个阶段是基于物联网系统报告的传感器信息。
  • 离线数据集成(如从一个系统导出的数据,然后使用两步过程将其导入另一个系统)既不实用也不合适。

示例使用场景:

  • 工人安全用例:从员工数据库(例如,人力资源管理外部系统)中提取员工的个人数据,以通知主管工人是否摔倒(通过跌倒传感器检测到)。
  • 智能制造用例:可用零件的数量低于定义的阈值;需要通过从供应商管理系统(VMS)获得供应商信息来发起新鲜供应的订单。

模式原理:
物联网数据的价值有限,除非它被丰富或与其他企业数据源集成。
物联网系统感测环境(和/或该环境中实体的状况)并生成事件,这些事件被输入外部系统以触发工作流程阶段转换(例如,在入口检测到货物的情况下,启动收货通知单(GRN))。


相关模式:
规则引擎(用于触发企业工作流)
AI/ML集成,用于预测事件和趋势(例如,供应和需求趋势),并触发主动行动而非被动行动
假设:
承载规则引擎的系统能够处理额外的负载,以支持集成需求。
外部系统公开接口(例如,API)以满足数据集成需求。
注意事项:
需要根据当前和未来的需求选择最佳集成类型
根据数据并发、最终用户期望和非高峰负载窗口等因素选择理想的同步频率
最大限度地减少对外部系统的影响
反模式场景:
组织可以容忍孤立数据收集/分析的场景。

总结

本章介绍了通常部署在中央服务器上的体系结构模式(AI/ML集成、规则引擎、文件上传和企业系统集成)。本章中的模式以及前几章中详细介绍的模式将使您能够构建任何物联网应用程序。接下来的章节将向我们展示如何将这些模式组合在一起以解决不同领域的复杂问题的示例,从下一章开始,我们将讨论消费者领域的两个具体用例——家庭自动化和智能煮蛋器——并了解如何将我们之前了解的架构模式应用于开发有趣的用例。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/780004.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

mac怎么压缩pdf文件大小,mac压缩pdf文件大小不改变清晰度

在数字化时代,pdf格式因其良好的兼容性和稳定性,成为了文档分享和传输的首选。然而,随着文件内容的丰富,pdf文件的体积也越来越大,给存储和传输带来了不小的困扰。本文将揭秘几种简单有效的pdf文件压缩方法&#xff0c…

图神经网络实战(16)——经典图生成算法

图神经网络实战(16)——经典图生成算法 0. 前言1. 图生成技术2. Erdős–Rnyi模型3. 小世界模型小结系列链接 0. 前言 图生成算法是指用于创建模拟图或网络结构的算法,这些算法可以根据特定的规则和概率分布生成具有特定属性的图&#xff0c…

SCI一区级 | Matlab实现BO-Transformer-BiLSTM时间序列预测

SCI一区级 | Matlab实现BO-Transformer-BiLSTM时间序列预测 目录 SCI一区级 | Matlab实现BO-Transformer-BiLSTM时间序列预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.【SCI一区级】Matlab实现BO-Transformer-BiLSTM时间序列预测,贝叶斯优化Transfor…

C++_STL---list

list的相关介绍 list是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代。 list的底层是带头双向循环链表结构,链表中每个元素存储在互不相关的独立节点中,在节点中通过指针指向其前一个元素和后一个元素。…

WAIC | 上海人形机器人创新中心 | 最新演讲 | 详细整理

前言 笔者看了7月4号的人形机器人与具身智能发展论坛的直播,并在7月5日到了上海WAIC展会现场参观。这次大会的举办很有意义,听并看了各家的最新成果,拍了很多照片视频,部分演讲也录屏了在重复观看学习 稍后会相继整理创立穹彻智…

[c++] 可变参数模版

前言 可变参数模板是C11及之后才开始使用,学校的老古董编译器不一定能用 相信大家在刚入门c/c时都接触过printf函数 int printf ( const char * format, ... ); printf用于将数据格式化输出到屏幕上,它的参数非常有意思,可以支持任意数量,任意类型的多参数.而如果我们想实现类…

【Java探索之旅】继承概念_语法_父类的成员访问

文章目录 📑前言一、继承1.1 继承的概念1.2 继承语法1.3 继承发生后 二、父类的访问2.1 父类成员变量访问2.2 父类成员方法访问 🌤️全篇总结 📑前言 在面向对象编程中,继承是一种重要的概念,它允许我们创建一个类&…

[go-zero] 简单微服务调用

文章目录 1.注意事项2.服务划分及创建2.1 用户微服务2.2 订单微服务 3.启动服务3.1 etcd 服务启动3.2 微服务启动3.3 测试访问 1.注意事项 go-zero微服务的注册中心默认使用的是Etcd。 本小节将以一个订单服务调用用户服务来简单演示一下,其实订单服务是api服务&a…

VSCode设置好看清晰的字体!中文用鸿蒙,英文用Jetbrains Mono

一、中文字体——HarmonyOS Sans SC 1、下载字体 官网地址:https://developer.huawei.com/consumer/cn/design/resource/ 直接下载:https://communityfile-drcn.op.dbankcloud.cn/FileServer/getFile/cmtyPub/011/111/111/0000000000011111111.20230517…

昇思25天学习打卡营第18天 | K近邻算法实现红酒聚类

1、实验目的 了解KNN的基本概念;了解如何使用MindSpore进行KNN实验。 2、K近邻算法原理介绍 K近邻算法(K-Nearest-Neighbor, KNN)是一种用于分类和回归的非参数统计方法,最初由 Cover和Hart于1968年提出(Cover等人,1967)&#…

Golang | Leetcode Golang题解之第220题存在重复元素III

题目: 题解: func getID(x, w int) int {if x > 0 {return x / w}return (x1)/w - 1 }func containsNearbyAlmostDuplicate(nums []int, k, t int) bool {mp : map[int]int{}for i, x : range nums {id : getID(x, t1)if _, has : mp[id]; has {retu…

ctfshow web sql注入 web242--web249

web242 into outfile 的使用 SELECT ... INTO OUTFILE file_name[CHARACTER SET charset_name][export_options]export_options:[{FIELDS | COLUMNS}[TERMINATED BY string]//分隔符[[OPTIONALLY] ENCLOSED BY char][ESCAPED BY char]][LINES[STARTING BY string][TERMINATED…

【三级等保】等保整体建设方案(Word原件)

建设要点目录: 1、系统定级与安全域 2、实施方案设计 3、安全防护体系建设规划 软件全文档,全方案获取方式:本文末个人名片直接获取。

数据结构——二叉树相关题目

1.寻找二叉树中数值为x的节点 //寻找二叉树中数值为x的节点 BTNode* TreeFind(BTNode* root, BTDataType x)//传过来二叉树的地址和根的地址,以及需要查找的数据 {if (root Null){return Null;}//首先需要先判断这个树是否为空,如果为空直接返回空if (…

基于python的数据分解-趋势-季节性-波动变化

系列文章目录 前言 时间序列数据的分解,一般分为趋势项,季节变化项和随机波动项。可以基于加法或者乘法模型。季节变化呈现出周期变化,因此也叫季节效应(周期)。 一、数据分解步骤 (1)估计时间序列的长期…

拓扑排序,PageRank(markov),实对称矩阵等

拓扑排序 多件事情有先后顺序,如何判断哪个先哪个后 拓扑排序算法: 1.读入图时,需要记录每个顶点的入度,以及相邻的所有顶点 2.将入度为0的顶点入队(先进先出) 3.取出队首元素a,&#xf…

rocketmq-console可视化界面功能说明

rocketmq-console可视化界面功能说明 登录界面OPS(运维)Dashboard(驾驶舱)Cluster(集群)Topic(主题)Consumer(消费者)Producer(生产者)Message(消息)MessageTrace(消息轨迹) rocketmq-console是rocketmq的一款可视化工具,提供了mq的使用详情等功能。 本章针对于rock…

基于springboot+vue+uniapp的高校宿舍信息管理系统小程序

开发语言:Java框架:springbootuniappJDK版本:JDK1.8服务器:tomcat7数据库:mysql 5.7(一定要5.7版本)数据库工具:Navicat11开发软件:eclipse/myeclipse/ideaMaven包&#…

springboot + mybatis 多数据源切换

参考的b站博主写的 配置文件: spring:datasource:db1:jdbc-url: jdbc:mysql://localhost:3306/interview_database?useUnicodetrue&characterEncodingutf-8&useSSLfalseusername: rootpassword: 12345driver-class-name: com.mysql.cj.jdbc.Driverdb2:jdbc-url: jdbc…

rancher管理多个集群

一、rancher部署 单独部署到一台机器上,及独立于k8s集群之外: 删除所有yum源,重新建yum源: # 建centos7.9的yum源 # cat CentOS-Base.repo # CentOS-Base.repo # # The mirror system uses the connecting IP address of the …