复现YOLO_ORB_SLAM3_with_pointcloud_map项目记录

文章目录

  • 1.环境问题
  • 2.遇到的问题
    • 2.1编译问题1 monotonic_clock
    • 2.2 associate.py
    • 2.3 associate.py问题
  • 3.运行问题


1.环境问题

首先环境大家就按照github上的指定环境安装即可
在这里插入图片描述
环境怎么安装网上大把的资源,自己去找。

2.遇到的问题

2.1编译问题1 monotonic_clock

在这里插入图片描述
这是因为C++版本不同导致的系统计时函数编译报错
解决方案是 搜索COMPILEDWITHC11
然后把monotonic_clock 换成 steady_clock
例如:

/*
#ifdef COMPILEDWITHC11
            std::chrono::steady_clock::time_point t1 = std::chrono::steady_clock::now();
#else
            std::chrono::monotonic_clock::time_point t1 = std::chrono::monotonic_clock::now();
#endif
*/
// 替换成下面的:
	std::chrono::steady_clock::time_point t1 = std::chrono::steady_clock::now();//修改替换的代码部分

这个问题会报很多次,至少十几次吧,因为很多文件都有这个东西,他报错了我们根据报错位置去改就可以了,就是比较麻烦。

当然我看到有人说只需要把COMPILEDWITHC11改为COMPILEDWITHC14就可以了,这个我没有尝试,我只用了上面的方法,大家可以自己尝试。

2.2 associate.py

数据集的下载地址:https://cvg.cit.tum.de/data/datasets/rgbd-dataset/download
在这里插入图片描述

associate.py是个啥,这个东西怎么用
这个就是把数据集转化成一个文件的东西
链接: 怎么用看这个

1.按照要求下载数据集,我下载的是rgbd_dataset_freiburg3_walking_xyz,将其解压到你喜欢的目录.我个人放在了evalution下

2.下载 associate.py.放在evalution目录下面.
在这里插入图片描述

3.打开终端,进入到associate.py所在目录
在这里插入图片描述

python associate.py rgb.txt depth.txt > associations.txt

4.命令解说

./Examples/RGB-D/rgbd_tum Vocabulary/ORBvoc.txt Examples/RGB-D/TUMX.yaml PATH_TO_SEQUENCE_FOLDER ASSOCIATIONS_FILE

PATH_TO_SEQUENCE_FOLDER文件夹即为数据库所在文件夹,我的是在orbslam2工程下面,
ASSOCIATIONS_FILE即为第3步中生成的associations.txt,给出他的制定目录位置
例子:大家可以参考我的目录自行更改!

./Examples/RGB-D/rgbd_tum Vocabulary/ORBvoc.txt Examples/RGB-D/TUMX.yaml /home/lvslam/YOLO_ORB_SLAM3_with_pointcloud_map/evaluation/rgbd_dataset_freiburg3_walking_xyz /home/lvslam/YOLO_ORB_SLAM3_with_pointcloud_map/evaluation/rgbd_dataset_freiburg3_walking_xyz/associations.txt 

2.3 associate.py问题

问题1:报错AttributeError: ‘dict_keys’ object has no attribute ‘remove’
由于Python2和python3语法的差别,需要将associate.py中第86行87行的

    first_keys = first_list.keys()
    second_keys = second_list.keys()

改为

    first_keys = list(first_list.keys())
    second_keys = list(second_list.keys())

问题2:TypeError: read_file_list() takes exactly 2 arguments (1 given)
所遇到的问题是因为read_file_list()函数需要两个参数,而你在调用时只传递了一个参数。我们需要向read_file_list()传递两个参数,即args.first_file和remove_bounds。从代码来看,remove_bounds应该是一个布尔值,具体是True还是False,可以根据需求来设定。
我们需要修改associate.py
改为:

import argparse
import sys
import os
import numpy


def read_file_list(filename, remove_bounds):
    """
    Reads a trajectory from a text file. 
    
    File format:
    The file format is "stamp d1 d2 d3 ...", where stamp denotes the time stamp (to be matched)
    and "d1 d2 d3.." is arbitary data (e.g., a 3D position and 3D orientation) associated to this timestamp. 
    
    Input:
    filename -- File name
    
    Output:
    dict -- dictionary of (stamp,data) tuples
    
    """
    file = open(filename)
    data = file.read()
    lines = data.replace(",", " ").replace("\t", " ").split("\n")
    if remove_bounds:
        lines = lines[100:-100]
    list = [[v.strip() for v in line.split(" ") if v.strip() != ""] for line in lines if len(line) > 0 and line[0] != "#"]
    list = [(float(l[0]), l[1:]) for l in list if len(l) > 1]
    return dict(list)


def associate(first_list, second_list, offset, max_difference):
    """
    Associate two dictionaries of (stamp,data). As the time stamps never match exactly, we aim 
    to find the closest match for every input tuple.
    
    Input:
    first_list -- first dictionary of (stamp,data) tuples
    second_list -- second dictionary of (stamp,data) tuples
    offset -- time offset between both dictionaries (e.g., to model the delay between the sensors)
    max_difference -- search radius for candidate generation

    Output:
    matches -- list of matched tuples ((stamp1,data1),(stamp2,data2))
    
    """
    first_keys = list(first_list.keys())
    second_keys = list(second_list.keys())
    potential_matches = [(abs(a - (b + offset)), a, b)
                         for a in first_keys
                         for b in second_keys
                         if abs(a - (b + offset)) < max_difference]
    potential_matches.sort()
    matches = []
    for diff, a, b in potential_matches:
        if a in first_keys and b in second_keys:
            first_keys.remove(a)
            second_keys.remove(b)
            matches.append((a, b))

    matches.sort()
    return matches


if __name__ == '__main__':
    # parse command line
    parser = argparse.ArgumentParser(description='''
    This script takes two data files with timestamps and associates them   
    ''')
    parser.add_argument('first_file', help='first text file (format: timestamp data)')
    parser.add_argument('second_file', help='second text file (format: timestamp data)')
    parser.add_argument('--first_only', help='only output associated lines from first file', action='store_true')
    parser.add_argument('--offset', help='time offset added to the timestamps of the second file (default: 0.0)', default=0.0)
    parser.add_argument('--max_difference', help='maximally allowed time difference for matching entries (default: 0.02)', default=0.02)
    parser.add_argument('--remove_bounds', help='remove first and last 100 entries', action='store_true')
    args = parser.parse_args()

    first_list = read_file_list(args.first_file, args.remove_bounds)
    second_list = read_file_list(args.second_file, args.remove_bounds)

    matches = associate(first_list, second_list, float(args.offset), float(args.max_difference))

    if args.first_only:
        for a, b in matches:
            print("%f %s" % (a, " ".join(first_list[a])))
    else:
        for a, b in matches:
            print("%f %s %f %s" % (a, " ".join(first_list[a]), b - float(args.offset), " ".join(second_list[b])))

3.运行问题

rgbd_tum: /tmp/llvm/lib/Support/BranchProbability.cpp:41:llvm::BranchProbability::BranchProbability(uint32_t, uint32_t): 假设 ‘Numerator <= Denominator && “Probability cannot be bigger than 1!”’ 失败。
已放弃 (核心已转储)
在这里插入图片描述
在这里插入图片描述
运行出来两秒就闪退的问题!
切换刚开始的libtorch版本
https://download.pytorch.org/libtorch/cpu/libtorch-cxx11-abi-shared-with-deps-2.3.1%2Bcpu.zip
这个时2.3.1版本的,我们只需要将上面的数字换掉,然后直接浏览器粘贴就可以下对对应的版本!!

经过测试使用1.7.1版本的libtorch可以解决这个问题
也就是
https://download.pytorch.org/libtorch/cpu/libtorch-cxx11-abi-shared-with-deps-1.7.1%2Bcpu.zip
重新安装号新的1.7.1版本的libtorch后重新编译,./build.sh
又会遇到下面的问题:
version `GOMP_4.5’ not found (required by /lib/x86_64-linux-gnu/libpcl_common.so.1.10)

在这里插入图片描述
我们需要链接动态库解决这个问题:

ln -sf /usr/lib/x86_64-linux-gnu/libgomp.so.1 /YOLO_ORB_SLAM3_with_pointcloud_map/Thirdparty/libtorch/lib/libgomp-75eea7e8.so.1

之后应该就是可以运行了,不过有可能有人会碰到别的问题
之后如果报错:libORB_SLAM3.so: undefined symbol: _ZN5DBoW24FORB1LE,查看下面的博客就可以
https://blog.csdn.net/qq_41035283/article/details/128301376

然后我们就成功复现这个项目了!!!!
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/778692.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

DDR3(三)

目录 1 预取1.1 什么是预取1.2 预取有哪些好处1.3 结构框图1.4 总结 2 突发2.1 什么是突发2.2 突发与预取 本文讲解DDR中常见的两个术语&#xff1a;预取和突发&#xff0c;对这两个概念理解的关键在于地址线的低位是否参与译码&#xff0c;具体内容请继续往下看。 1 预取 1.1…

印尼网络安全治理能力观察

在全国国际机场的移民服务完全瘫痪 100 多个小时后&#xff0c;印尼政府承认其新成立的国家数据中心 (PDN) 遭受了网络攻击。 恶意 Lockbit 3.0 勒索软件加密了存储在中心的重要数据&#xff0c;其背后的黑客组织要求支付 800 万美元的赎金。 不幸的是&#xff0c;大多数数据…

使用Source Insight 4.0

一、使用书签 二、添加文件 三、Search 3.1 替换所有变量 四、右键查询 4.1 查看被调用的地方

【算法笔记自学】第 6 章 C++标准模板库(STL)介绍

6.1vector常见用法详解 #include <cstdio> #include <vector> using namespace std;int main() {int n, x;scanf("%d", &n);vector<int> v;for (int i 0; i < n; i) {scanf("%d", &x);v.push_back(x);}for (int i 0; i <…

[数据结构] 基于插入的排序 插入排序希尔排序

标题&#xff1a;[数据结构] 排序#插入排序&希尔排序 水墨不写bug 目录 &#xff08;一&#xff09;插入排序 实现思路&#xff1a; 插入排序实现&#xff1a; &#xff08;二&#xff09;希尔排序 希尔排序的基本思想&#xff1a; 希尔排序的实现&#xff1a; 正…

Linux 进程间的信号

1.信号的初认识 信号是进程之间事件异步通知的一种方式&#xff0c;属于软中断。通俗来说信号就是让用户或进程给其他用户和进程发生异步信息的一种方式。对于信号我们可以根据实际生活&#xff0c;对他有以下几点认识&#xff1a;1.在没有产生信号时我们就知道产生信号要怎么处…

Win11 Python3.10 安装pytorch3d

0&#xff0c;背景 Python3.10、cuda 11.7、pytorch 2.0.1 阅读【深度学习】【三维重建】windows10环境配置PyTorch3d详细教程-CSDN博客 1&#xff0c;解决方法 本来想尝试&#xff0c;结果发现CUB安装配置对照表里没有cuda 11.7对应的版本&#xff0c;不敢轻举妄动&#x…

求 自然对数 ln(x)

np.log()函数是用来计算数组中每个元素的自然对数的。自然对数是以数学常数e&#xff08;约等于2.71828&#xff09;为底的对数。NumPy作为一个强大的数值计算库&#xff0c;提供了很多用于数组操作的函数&#xff0c;np.log()就是其中之一。 • 下面是一个简单的例子&#xff…

24西安电子科技大学经济与管理学院—考研录取情况

24西安电子科技大学—经理与管理学院—考研录取统计 01、经理与管理学院各个方向 02、24经济与管理近三年复试分数线对比 1、经管院24年院线相对于23年院线普遍下降2-15分&#xff0c;个别专业上涨4-10分。 2、经管院应用经济学2024年院线350分&#xff1b;管理科学与工程院线…

进程控制-exec函数

让父子进程来执行不相干的操作 能够替换进程地址空间的代码.text段 执行另外的程序&#xff0c;不需要创建额外的的地址空间 当前程序中调用另外一个应用程序 指定执行目录下的程序 int execl(const char *path, const char *arg&#xff0c;/* (char *) NULL */); /* pat…

如何配置 PostgreSQL 以实现高可用性和故障转移?

文章目录 一、高可用性和故障转移的概念&#xff08;一&#xff09;数据复制&#xff08;二&#xff09;监控和检测&#xff08;三&#xff09;快速切换 二、实现高可用性和故障转移的技术方案&#xff08;一&#xff09;流复制&#xff08;Streaming Replication&#xff09;&…

一文了解常见DNS结构

很多企业忽略DNS这个关键的组件&#xff0c;而当DNS出现问题是&#xff0c;就会导致网站无法访问、电子邮件无法发送和接收&#xff0c;从而影响到企业的正常运行。而网络团队成员如果想要处理DNS问题就必须对所在网络的DNS架构有一定的理解。 主DNS服务器&#xff1a; 主DNS服…

Pycharm python解释器 unsupported python 3.1 解决

Pycharm 环境 unsupported python 3.1解决 1. 问题重现2. 原因分析3. 解决方法 1. 问题重现 之前使用Pycharm 2024.1.1的时候&#xff0c;环境配置的Python 3.11.9&#xff0c;现在改成使用Pycharm 2020.2.2&#xff0c;结果Python解释器显示“unsupported python 3.1”&#…

一.1.(3)半导体二极管基本电路的分析方法及常见应用电路

1.二极管基本电路的分析方法 先标正负极&#xff0c;再看是否理想二极管 将二极管视为断路&#xff0c;求两端电压 两端电压均大于导通电压&#xff0c;压差大的先导通&#xff08;由于电源不是完全的阶跃&#xff0c;而是有一个电压爬升的过程&#xff09; 2.常见应用电路 1.求…

STL—容器—string类【对其结构和使用的了解】【对oj相关练习的训练】

STL—容器—string类 其实string类准确来说并不是容器&#xff0c;因为他出现的时间比STL要早&#xff0c;但是也可以说是容器吧。 1.为什么要学习string类&#xff1f; 1.1C语言当中的字符串 C语言中&#xff0c;字符串是以’\0’结尾的一些字符的集合&#xff0c;为了操作…

【技术支持】vscode代码格式化空格数量问题

问题 使用AltShiftF代码格式化时&#xff0c;发现有些文件格式化后缩进为2格个空格&#xff0c;有些文件正常4个空格 刨析 发现vue创建的文件使用的是两个空格&#xff0c;而且换行符表示方式也不一样 LF 是 Unix 和 Unix-like 系统&#xff08;如 Linux 和 macOS&#xff0…

springcloud分布式架构网上商城 LW +PPT+源码+讲解

3系统分析 3.1可行性分析 在开发系统之前要进行系统可行性分析&#xff0c;目的是在用最简单的方法去解决最大的问题&#xff0c;程序一旦开发出来满足了用户的需要&#xff0c;所带来的利益也很多。下面我们将从技术、操作、经济等方面来选择这个系统最终是否开发。 3.1.1技术…

网络漏洞挖掘实测报告

关于作者&#xff1a;个人主页 网络漏洞挖掘实测报告 一、前言 网络漏洞挖掘是信息安全领域中至关重要的一环。通过挖掘和修复漏洞&#xff0c;可以有效地保护系统免受潜在的攻击和破坏。本报告旨在记录一次完整的网络漏洞挖掘实测过程&#xff0c;包括实施方法、过程、结果以…

欢迎加入国家智能网联汽车创新中心OS开发训练营大家庭

欢迎加入国家智能网联汽车创新中心OS开发训练营大家庭。&#x1f680; 导学阶段启动 在正式开营之前&#xff0c;我们特别设置了导学阶段&#xff0c;旨在帮助大家更好地迎接颇具挑战性的项目实战。导学阶段包括一系列精心准备的视频课程和配套习题。github链接&#xff1a;htt…

基于YOLOv10+YOLOP+PYQT的可视化系统,实现多类别目标检测+可行驶区域分割+车道线分割【附代码】

文章目录 前言视频效果必要环境一、代码结构1、 训练参数解析2、 核心代码解析1.初始化Detector类2. torch.no_grad()3. 复制输入图像并初始化计数器4. 调用YOLOv10模型进行目标检测5. 提取检测结果信息6. 遍历检测结果并在图像上绘制边界框和标签7. 准备输入图像以适应End-to-…