算法系列--分治排序|再谈快速排序|快速排序的优化|快速选择算法

前言:本文就前期学习快速排序算法的一些疑惑点进行详细解答,并且给出基础快速排序算法的优化版本

一.再谈快速排序

快速排序算法的核心是分治思想,分治策略分为以下三步:

  1. 分解:将原问题分解为若干相似,规模较小的子问题
  2. 解决:如果子问题规模较小,直接解决;否则递归解决子问题
  3. 合并:原问题的解等于若干子问题解的合并

应用到快速排序算法:

  1. 分解:快速排序算法要实现的是对整个数组进行排序,但是规模较大,要想办法减少规模;他的解决策略是"选择一个基准元素,将数组划分为两部分,左边都是小于基准元素,右边都是大于基准元素",不断的重复上述过程,就能完成对整个数组的排序.对整个数组完成一次这样的操作后,再对左右两个区间分别执行上述过程
  2. 递归地对两个子数组进行快速排序,直到每个子数组的长度为0或1,此时数组已经有序。
  3. 由于在递归过程中子数组已经被分别排序,因此不需要再进行额外的合并步骤。

二.代码实现和细节讲解

快速排序的关键代码在于如何根据基准元素划分数组区间(parttion),分解的方法有很多,这里只提供一种方法挖坑法
代码:

class Solution {
    public int[] sortArray(int[] nums) {
        quick(nums, 0, nums.length - 1);
        return nums;
    }

    private void quick(int[] arr, int start, int end) {
        if(start >= end) return;// 递归结束条件
        int pivot = parttion(arr, start, end);
		
		// 递归解决子问题
        quick(arr, start, pivot - 1);
        quick(arr, pivot + 1, end);
    }

	
	// 挖坑法进行分解
    private int parttion(int[] arr, int left, int right) {
        int key = arr[left];
        while(left < right) {
            while(left < right && arr[right] >= key) right--;
            arr[left] = arr[right];
            while(left < right && arr[left] <= key) ++left;
            arr[right] = arr[left];
        }
        arr[left] = key;
        return left;
    }
    
}

细节解答:
1.为什么start>=end是递归结束条件?

不断的分解子问题,最终子问题的规模大小是1,即只有一个元素,此时无需继续进行分解,start和end指针同时指向该元素

2.为什么要right先走?而不是left先走?

具体谁先走取决于基准元素的位置,在上述代码中,基准元素(key)是最左边的元素,如果先移动left,left先遇到一个比基准元素大的元素,此时执行arr[right] = arr[left],由于没有保存arr[right],这个元素就会丢失
如果先走right,right先遇到一个比基准元素小的元素,此时执行arr[left]=arr[right],因为此时left并没有移动,还是pivot,但是pivot已经被我们使用key进行保存了

3.为什么是arr[right]>=key?>不行吗

大于等于主要是为了处理重复元素问题
例如有数组[6,6,6,6,6]如果是>,right指针不会发生移动,left指针也不会发生移动,此时陷于死循环

4.为什么叫做挖坑法

当r指针遇到第一个<pivot的元素后停止,执行arr[r] = arr[l],此时l位置就空白出来,形成了一个坑


三.快速排序的优化

主要有两个优化方向:

  1. 基准值pivot的选取,可以证明的是当随机选取基准值时,快速排序的时间复杂度趋近于O(N*logN),即最好的时间复杂度
  2. 重复元素的处理:如果区间内部有大量的重复元素,上述版本的快速排序算法会对相同的元素重复执行多次;为了减少冗余的操作,使用数组分三块的思想解决,同时如果遇到特殊的测试用例(顺序数组或逆序数组)时间复杂度会退化到O(N^2)

先根据一道题目(颜色分类)了解什么是数组分三块
分析

在这里插入图片描述
代码:

class Solution {
    public void sortColors(int[] nums) {
        // 分治 --
        // 1.定义三指针
        int i = 0;// 遍历整个数组
        int l = -1, r = nums.length;

        while(i < r) {
            if(nums[i] == 0) swap(nums,++l,i++);
            else if(nums[i] == 1) i++;
            else swap(nums,--r,i);
        }
        return;
    }

    private void swap(int[] nums,int x,int y) {
        int tmp = nums[x]; nums[x] = nums[y]; nums[y] = tmp;
    }
}
  • 注意l,r的起始位置,第一个元素和最后一个元素在开始的时候属于未处理状态,所以`l,r不能指向这两个元素,必须在区间之外
  • 所谓的数组分三块,就是使用三个指针去分别维护四个区间,其中的一个区间是未处理区间,随着cur指针的不断移动,所有的区间都被处理,最终也就只有三个区间

将上述思路应用于快速排序的parttion中,最终的结果就是划分为三个区间
在这里插入图片描述
代码实现:

class Solution {
    // 快速排序优化版
    // 分解--解决--合并
    public int[] sortArray(int[] nums) {
        qsort(nums, 0, nums.length - 1);
        return nums;
    }

    private void qsort(int[] nums, int start, int end) {
        if(start >= end) return;// 递归结束条件
        // 分解
        int pivot = nums[start];
        int l = start - 1, r = end + 1, i = start;
        while(i < r) {
            int cur = nums[i];
            if(cur < pivot) swap(nums, ++l, i++);
            else if(cur == pivot) ++i;
            else swap(nums, --r, i);
        }

        // [start, l]  [l+1, r-1]  [r, end]
        // 递归解决
        qsort(nums, start, l);
        qsort(nums, r, end);
    }

    private void swap(int[] nums,int i, int j) {
        int tmp = nums[i];  nums[i] = nums[j]; nums[j] = tmp;
    }
}

在这里插入图片描述
2.随机选取基准值
采用随机数的方式随机选取基准值

        int pivot = nums[start + new Random().nextInt(end - start + 1)];
        //               起始位置      随机产生的偏移量

完整的改进代码:

class Solution {
    // 快速排序优化版
    // 分解--解决--合并
    public int[] sortArray(int[] nums) {
        qsort(nums, 0, nums.length - 1);
        return nums;
    }

    private void qsort(int[] nums, int start, int end) {
        if(start >= end) return;// 递归结束条件
        // 分解
        int pivot = nums[start + new Random().nextInt(end - start + 1)];
        int l = start - 1, r = end + 1, i = start;
        while(i < r) {
            int cur = nums[i];
            if(cur < pivot) swap(nums, ++l, i++);
            else if(cur == pivot) ++i;
            else swap(nums, --r, i);
        }

        // [start, l]  [l+1, r-1]  [r, end]
        // 递归解决
        qsort(nums, start, l);
        qsort(nums, r, end);
    }

    private void swap(int[] nums,int i, int j) {
        int tmp = nums[i]; 
        nums[i] = nums[j]; 
        nums[j] = tmp;
    }
}

在这里插入图片描述

  • 效率明显提升

四.快速选择算法

快速选择算法是基于快速排序优化版本的一种时间复杂度可达到O(N)的选择算法,使用场景为第K大/前K大之类的选择问题

01.数组中的第K个最大的元素
链接:https://leetcode.cn/problems/kth-largest-element-in-an-array/
分析

  • 暴力解法就是直接使用sort进行排序,然后返回第K大即可
  • 时间复杂度:O(N*logN)
  • 空间复杂度:O(logN)递归产生的栈调用

接下来采用快速选择算法,实现O(N)的时间复杂度
代码:

class Solution {
    public int findKthLargest(int[] nums, int k) {
        return qsort(nums, 0, nums.length - 1, k);
    }

    private int qsort(int[] nums, int start, int end, int k) {
        if(start >= end) return nums[start];
        int pivot = nums[start + new Random().nextInt(end - start + 1)];
		
		// 数组分三块  <pivot  ==pivot  >pivot
        int l = start - 1, r = end + 1, i = start;
        while(i < r) {
            if(nums[i] < pivot) swap(nums, ++l, i++);
            else if(nums[i] == pivot) ++i;
            else swap(nums, --r, i);
        }

        // [start, l]  [l+1, r - 1]  [r, end]
        int c = end - r + 1, b = r - 1 - (l + 1) + 1, a = l - start + 1;
        // 分情况讨论  进行选择
        if(c >= k) return qsort(nums, r, end, k);
        else if(b + c >= k) return pivot;
        else return qsort(nums, start, l, k - b - c);// 找较小区间的第(k-b-c)大
    }

    private void swap(int[] arr, int i, int j) {
        int tmp = arr[i]; arr[i] = arr[j]; arr[j] = tmp;
    }
}
  • 快速选择算法和快速排序的思想很像,不同点在于快速选择算法只对每次parttion结果的一部分区间进行递归,而不是像快速排序一样对整个区间进行递归,所以快速选择算法的时间复杂度降到了O(N)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/778501.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Debezium报错处理系列之第110篇: ERROR Error during binlog processing.Access denied

Debezium报错处理系列之第110篇:ERROR Error during binlog processing. Last offset stored = null, binlog reader near position = /4 Access denied; you need at least one of the REPLICATION SLAVE privilege for this operation 一、完整报错二、错误原因三、解决方法…

智能化客户服务:提升效率与体验的新模式

在数字化浪潮的推动下&#xff0c;客户服务领域正经历着一场深刻的变革。智能化客户服务的兴起&#xff0c;不仅重塑了企业与客户之间的互动方式&#xff0c;更在提升服务效率与增强客户体验方面展现出了巨大潜力。本文将深入探讨智能化客户服务的新模式&#xff0c;分析其如何…

Error in onLoad hook: “SyntaxError: Unexpected token u in JSON at position 0“

1.接收页面报错 Error in onLoad hook: "SyntaxError: Unexpected token u in JSON at position 0" Unexpected token u in JSON at position 0 at JSON.parse (<anonymous>) 2.发送页面 &#xff0c;JSON.stringify(item) &#xff0c;将对象转换为 JSO…

InspireFace-商用级的跨平台开源人脸分析SDK

InspireFace-商用级的跨平台开源人脸分析SDK InspireFaceSDK是由insightface开发的⼀款⼈脸识别软件开发⼯具包&#xff08;SDK&#xff09;。它提供了⼀系列功能&#xff0c;可以满⾜各种应⽤场景下的⼈脸识别需求&#xff0c;包括但不限于闸机、⼈脸⻔禁、⼈脸验证等。 该S…

运维锅总详解CPU

本文从CPU简介、衡量CPU性能指标、单核及多核CPU工作流程、如何平衡 CPU 性能和防止CPU过载、为什么计算密集型任务要选择高频率CPU、超线程技术、CPU历史演进及摩尔定律等方面对CPU进行详细分析。希望对您有所帮助&#xff01; 一、CPU简介 CPU&#xff08;中央处理器&#…

2024年马蹄杯专科组第三场初赛 解题报告 | 珂学家

前言 题解 VP了这场比赛&#xff0c;整体还是偏简单&#xff0c;最难的题是数论相关&#xff0c;算一道思维题。 也看了赛时榜单&#xff0c;除了数论&#xff0c;大模拟和图论题也是拦路虎。 打工人 有趣的一道数学题&#xff0c;有点绕 很像数列和 ∑ i 1 i n i n ∗ …

14-20 Vision Transformer用AI的画笔描绘新世界

概述 毫无疑问,目前最受关注且不断发展的最重要的主题之一是使用人工智能生成图像、视频和文本。大型语言模型 (LLM) 已展示出其在文本生成方面的卓越能力。它们在文本生成方面的许多问题已得到解决。然而,LLM 面临的一个主要挑战是它们有时会产生幻觉反应。 最近推出的新模…

06-6.4.5 关键路径

&#x1f44b; Hi, I’m Beast Cheng &#x1f440; I’m interested in photography, hiking, landscape… &#x1f331; I’m currently learning python, javascript, kotlin… &#x1f4eb; How to reach me --> 458290771qq.com 喜欢《数据结构》部分笔记的小伙伴可以…

Apispec,一个用于生成 OpenAPI(Swagger)规范的 Python 库

目录 01什么是 Apispec&#xff1f; 为什么选择 Apispec&#xff1f; 安装与配置 02Apispec 的基本用法 生成简单的 API 文档 1、创建 Apispec 实例 2、定义 API 路由和视图 3、添加路径到 Apispec 集成 Flask 和 Apispec 1、安装…

Buuctf之SimpleRev做法

首先&#xff0c;查个壳&#xff0c;64bit&#xff0c;那就丢进ida64中进行反编译进来之后&#xff0c;我们进入main函数&#xff0c;发现里面没什么东西&#xff0c;那就shiftf12搜索字符串&#xff0c;找到关键字符串&#xff0c;双击进入然后再选中该字符串&#xff0c;ctrl…

东莞惠州数据中心机房搬迁方案流程

进入21世纪以来&#xff0c;数据中心如雨后春笋般在各行各业兴建起来&#xff0c;经过近20年的投产运行&#xff0c;大量的数据中心机房存在容量不足、机房陈旧、设备老化无法支撑业务发展的情况&#xff0c;产生机房改造、搬迁需求。为安全、可靠地完成机房搬迁&#xff0c;减…

【JVM 的内存模型】

1. JVM内存模型 下图为JVM内存结构模型&#xff1a; 两种执行方式&#xff1a; 解释执行&#xff1a;JVM是由C语言编写的&#xff0c;其中有C解释器&#xff0c;负责先将Java语言解释翻译为C语言。缺点是经过一次JVM翻译&#xff0c;速度慢一点。JIT执行&#xff1a;JIT编译器…

7 动态规划

下面的例子不错&#xff1a; 对于动态规划&#xff0c;能学到不少东西&#xff1b; 你要清楚每一步都在做什么&#xff0c;划分细致就能够拆解清楚&#xff01; xk. - 力扣&#xff08;LeetCode&#xff09; labuladong的算法笔记-动态规划-CSDN博客 动态规划是一种强大的算法…

nginx的正向代理和反向代理以及tomcat

nginx的正向代理和反向代理&#xff1a; 正向代理以及缓存配置&#xff1a; 代理&#xff1a;客户端不再是直接访问服务端&#xff0c;通过代理服务器访问服务端。 正向代理&#xff1a;面向客户端&#xff0c;我们通过代理服务器的IP地址访问目标范围端。 服务端只知道代理…

绝区叁--如何在移动设备上本地运行LLM

随着大型语言模型 (LLM)&#xff08;例如Llama 2和Llama 3&#xff09;不断突破人工智能的界限&#xff0c;它们正在改变我们与周围技术的互动方式。这些模型早已集成到我们的手机中&#xff0c;但到目前为止&#xff0c;它们理解和处理请求的能力还非常有限。然而&#xff0c;…

【C++】模板进阶--保姆级解析(什么是非类型模板参数?什么是模板的特化?模板的特化如何应用?)

目录 一、前言 二、什么是C模板&#xff1f; &#x1f4a6;泛型编程的思想 &#x1f4a6;C模板的分类 三、非类型模板参数 ⚡问题引入⚡ ⚡非类型模板参数的使用⚡ &#x1f525;非类型模板参数的定义 &#x1f525;非类型模板参数的两种类型 &#x1f52…

使用 ESP32-WROOM + DHT11 做个无屏温湿度计

最近梅雨天&#xff0c;有个房间湿度很大&#xff0c;而我需要远程查看温湿度&#xff0c;所以无所谓有没有显示屏&#xff0c;某宝上的温湿度计都是带屏的&#xff0c;如果连WIFI查看温湿度操作也比较麻烦&#xff0c;还需要换电池&#xff0c;实在不能满足我的需求&#xff0…

剖析DeFi交易产品之UniswapV3:交易路由合约

本文首发于公众号&#xff1a;Keegan小钢 SwapRouter 合约封装了面向用户的交易接口&#xff0c;但不再像 UniswapV2Router 一样根据不同交易场景拆分为了那么多函数&#xff0c;UniswapV3 的 SwapRouter 核心就只有 4 个交易函数&#xff1a; exactInputSingle&#xff1a;指…

Vue进阶(四十五)Jest集成指南

文章目录 一、前言二、环境检测三、集成问题汇总四、拓展阅读 一、前言 在前期博文《Vue进阶&#xff08;八十八&#xff09;Jest》中&#xff0c;讲解了Jest基本用法及应用示例。一切顺利的话&#xff0c;按照文档集成应用即可&#xff0c;但是集成过程中遇到的问题可能五花八…

【WEB前端2024】3D智体编程:乔布斯3D纪念馆-第55课-芝麻开门(语音 识别 控制3D纪念馆开门 和 关门)

【WEB前端2024】3D智体编程&#xff1a;乔布斯3D纪念馆-第55课-芝麻开门&#xff08;语音识别控制3D纪念馆开门和关门&#xff09; 使用dtns.network德塔世界&#xff08;开源的智体世界引擎&#xff09;&#xff0c;策划和设计《乔布斯超大型的开源3D纪念馆》的系列教程。dtn…