InspireFace-商用级的跨平台开源人脸分析SDK

InspireFace-商用级的跨平台开源人脸分析SDK

InspireFaceSDK是由insightface开发的⼀款⼈脸识别软件开发⼯具包(SDK)。它提供了⼀系列功能,可以满⾜各种应⽤场景下的⼈脸识别需求,包括但不限于闸机、⼈脸⻔禁、⼈脸验证等。

该SDK包含了多种常⽤的⼈脸识别算法,涵盖了⼈脸检测、⼈脸属性分析、⼈脸特征提取和⼈脸⽐对等功能。这些算法经过精⼼设计,具备业界领先的⼈脸识别能⼒和算法精度⽔平。为了满⾜不同的部署需求,InspireFaceSDK提供了四种不同平台的部署选项。

这些选项涵盖了各种推理场景,包括闸机芯⽚、端侧设备(如智能⼿机、平板电脑)、CPU(中央处理器)和服务器(CUDA)、NPU(神经处理单元)等。开发⼈员可以根据实际情况选择适合⾃⼰应⽤的部署⽅案。

在这里插入图片描述

如何获取

  • 你可以直接从insightface.ai进入到仓库中获取到InspireFaceSDK的稳定版本的源代码;
  • 如果你持续关注代码更新动态,你可以从InspireFace的开发仓库进入获取到开发版本的资源;

功能介绍

InspireFaceSDK目前支持以下的功能,并且有更多的功能正在开发中:

IndexFunctionAdaptationNote
1人脸检测支持支持多种尺度图像的输入
2稠密关键点检测支持
3人脸识别支持基于arcface的高精度模型
4人脸跟踪支持拥有多种跟踪模式
5口罩检测支持
6静默人脸活体检测支持MiniVision
7质量分析支持
8头部姿态估计支持
9属性分析支持年龄、种族、性别等等
10表情与动作分析开发中眨眼、摇头、点头
11人脸红外活体检测开发中

平台与架构的支持

我们已经完成了跨各种操作系统和CPU架构的软件适配和测试。这包括对Linux、macOS、iOS和Android等平台的兼容性验证,以及对特定硬件如Rockchip部分设备支持的测试,以确保在不同环境下稳定运行。

No.Operating SystemCPU ArchitectureSpecial Device SupportAdaptedPassed Tests
1LinuxARMv7-已适配通过离线测试
2ARMv8-已适配通过离线测试
3x86/x86_64-已适配通过在线测试
4ARMv7RV1109RV1126已适配通过离线测试
5x86/x86_64CUDA已适配通过离线测试
6macOSIntel x86-已适配通过离线测试
7Apple Silicon-已适配通过离线测试
8iOSARM-已适配通过离线测试
9AndroidARMv7-已适配
10ARMv8-已适配

[编译]准备工作

安装OpenCV

如果您打算在本地或服务器上使用SDK,请确保已经在主机设备上安装了OpenCV,以便在编译过程中成功链接。对于交叉编译目标,如Android或ARM嵌入式板,您可以使用3rdparty/ inspirreface -precompile/ OpenCV /提供的预编译OpenCV库,所以可以跳过此步骤

安装MNN

3rdparty目录已经包含了MNN库,并指定了一个特定的版本作为稳定版本。如果您需要在编译期间启用或禁用其他配置选项,您可以参考MNN提供的CMake选项。如果您需要使用自己的预编译版本,请随意替换它,如果不需要请跳过此步骤

获取工程

您可以拉取稳定版本或开发版的工程代码到本地:

# Pull the stable version
git clone https://github.com/deepinsight/insightface
cd insightface/cpp-package/inspireface/

# or, Pull the develop version
git clone https://github.com/HyperInspire/InspireFace

拉取第三方依赖

在编译前必须要拉取第三方依赖库到inspireface的根目录下:

# Must enter this directory
cd InspireFace
# Clone the repository and pull submodules
git clone --recurse-submodules https://github.com/HyperInspire/3rdparty.git

如果你需要更新3rdpart仓库以确保它是最新的,或者如果你在初始拉取时没有使用——recursive 参数,你可以运行git submodule update——init——recursive:

# Must enter this directory
cd InspireFace
# If you're not using recursive pull
git clone https://github.com/HyperInspire/3rdparty.git

cd 3rdparty
git pull
# Update submodules
git submodule update --init --recursive

环境要求

目前InspireFace支持的宿主机设备仅有Linux和MacOS两个系统,请确保您的计算机符合以下配置需求:

  • CMake (version 3.10 or higher)
  • OpenCV (version 4.20 or higher)
    • Use the specific OpenCV-SDK supported by each target platform such as Android, iOS, and Linux.
  • NDK (version 16 or higher, only required for Android)
  • MNN (version 1.4.0 or higher)
  • C++ Compiler
    • Either GCC or Clang can be used (macOS does not require additional installation as Xcode is included)
      • Recommended GCC version is 4.9 or higher
        • Note that in some distributions, GCC (GNU C Compiler) and G++ (GNU C++ Compiler) are installed separately.
        • For instance, on Ubuntu, you need to install both gcc and g++
      • Recommended Clang version is 3.9 or higher
    • arm-linux-gnueabihf (for RV1109/RV1126)
      • Prepare the cross-compilation toolchain in advance, such as gcc-arm-8.3-2019.03-x86_64-arm-linux-gnueabihf
  • CUDA (version 10.1 or higher)
    • GPU-based inference requires installing NVIDIA’s CUDA dependencies on the device.
  • Eigen3
    • If you need to use the tracking-by-detection feature, you must have Eigen3 installed in advance.
  • RKNN
    • Adjust and select versions currently supported for specific requirements.

[编译]开始编译

工程采用CMake作为构建工具,CMake的选项用于控制编译阶段的各种细节。请根据您的实际需求进行选择。您可以查看参数表CMake Option。

Linux/MacOS编译

确保安装了OpenCV,就可以开始编译过程了。如果您使用的是macOS或Linux,您可以使用项目根目录下command 文件夹中提供的shell脚本快速编译:

cd InspireFace/
# Execute the local compilation script
bash command/build.sh

编译之后,您可以在构建目录中找到包含编译结果的本地文件。安装目录结构如下:

inspireface-linux
   ├── include
   │   ├── herror.h
   │   └── inspireface.h
   └── lib
       └── libInspireFace.so
  • libInspireFace.so:编译的动态链接库.
  • inspireface.h:头文件定义
  • herror.h:引用错误号定义

Note: 更多平台的相关的详细编译过程您可以直接进入源代码仓库中。

[示例]如何使用

C/C++ API

要将InspireFace集成到C/ c++项目中,您只需要链接InspireFace库并包含适当的头文件。下面是一个展示人脸检测的基本例子:

HResult ret;
// The resource file must be loaded before it can be used
ret = HFLaunchInspireFace(packPath);
if (ret != HSUCCEED) {
    std::cout << "Load Resource error: " << ret << std::endl;
    return ret;
}

// Enable the functions in the pipeline: mask detection, live detection, and face quality detection
HOption option = HF_ENABLE_QUALITY | HF_ENABLE_MASK_DETECT | HF_ENABLE_LIVENESS;
// Non-video or frame sequence mode uses IMAGE-MODE, which is always face detection without tracking
HFDetectMode detMode = HF_DETECT_MODE_IMAGE;
// Maximum number of faces detected
HInt32 maxDetectNum = 5;
// Handle of the current face SDK algorithm context
HFSession session = {0};
ret = HFCreateInspireFaceSessionOptional(option, detMode, maxDetectNum, -1, -1, &session);
if (ret != HSUCCEED) {
    std::cout << "Create FaceContext error: " << ret << std::endl;
    return ret;
}

// Load a image
cv::Mat image = cv::imread(sourcePath);
if (image.empty()) {
    std::cout << "The source entered is not a picture or read error." << std::endl;
    return 1;
}
// Prepare an image parameter structure for configuration
HFImageData imageParam = {0};
imageParam.data = image.data;       // Data buffer
imageParam.width = image.cols;      // Target view width
imageParam.height = image.rows;      // Target view width
imageParam.rotation = HF_CAMERA_ROTATION_0;      // Data source rotate
imageParam.format = HF_STREAM_BGR;      // Data source format

// Create an image data stream
HFImageStream imageHandle = {0};
ret = HFCreateImageStream(&imageParam, &imageHandle);
if (ret != HSUCCEED) {
    std::cout << "Create ImageStream error: " << ret << std::endl;
    return ret;
}

// Execute HF_FaceContextRunFaceTrack captures face information in an image
HFMultipleFaceData multipleFaceData = {0};
ret = HFExecuteFaceTrack(session, imageHandle, &multipleFaceData);
if (ret != HSUCCEED) {
    std::cout << "Execute HFExecuteFaceTrack error: " << ret << std::endl;
    return ret;
}
// Print the number of faces detected
auto faceNum = multipleFaceData.detectedNum;
std::cout << "Num of face: " << faceNum << std::endl;

ret = HFReleaseImageStream(imageHandle);
if (ret != HSUCCEED) {
    printf("Release image stream error: %lu\n", ret);
}
// The memory must be freed at the end of the program
ret = HFReleaseInspireFaceSession(session);
if (ret != HSUCCEED) {
    printf("Release session error: %lu\n", ret);
    return ret;
}

Note: 更多使用相关的详细方法您可以直接进入源代码仓库中查看。

Python Native API

InspireFace提供了一个Python API,允许更有效地使用InspireFace库。编译完动态链接库后,你需要将其符号链接或复制到根目录下的python/inspireface/modules/core 目录下。然后你可以通过导航到**python/**目录开始测试。你的Python环境需要安装一些依赖项:

import cv2
import inspireface as ifac
from inspireface.param import *

# Step 1: Initialize the SDK and load the algorithm resource files.
resource_path = "pack/Pikachu"
ret = ifac.launch(resource_path)
assert ret, "Launch failure. Please ensure the resource path is correct."

# Optional features, loaded during session creation based on the modules specified.
opt = HF_ENABLE_NONE
session = ifac.InspireFaceSession(opt, HF_DETECT_MODE_IMAGE)

# Load the image using OpenCV.
image = cv2.imread(image_path)
assert image is not None, "Please check that the image path is correct."

# Perform face detection on the image.
faces = session.face_detection(image)
print(f"face detection: {len(faces)} found")

# Copy the image for drawing the bounding boxes.
draw = image.copy()
for idx, face in enumerate(faces):
    print(f"{'==' * 20}")
    print(f"idx: {idx}")
    # Print Euler angles of the face.
    print(f"roll: {face.roll}, yaw: {face.yaw}, pitch: {face.pitch}")
    # Draw bounding box around the detected face.
    x1, y1, x2, y2 = face.location
    cv2.rectangle(draw, (x1, y1), (x2, y2), (0, 0, 255), 2)

Note: 仓库中的会提供更多的其他平台下的使用方法,我们推荐您使用最新的代码进行集成

[快捷]直接下载预编译的库

如果你想快速体验来节约编译的时间你可以跳过编译步骤,直接通过开发仓库的Release页面下载我们提供的最新的发行版SDK,其中涵盖了大部分的平台支持,所有的预编译库均是通过Github Actions进行持续集成发布,已经通过了测试。

模型列表

InspireFace目前提供了多款模型应对不同的使用场景,目前涵盖了移动端、服务端和部分嵌入式设备端,您可以进入到我们的Github页面进行更详细的了解和下载体验:

NameSupported DevicesNote
PikachuCPU适合移动端设备部署
MegatronCPU, GPU适合移动端、服务端和携GPU设备部署
Gundam-RV1109RKNPU支持RK1109/1126设备部署

测试实例

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/778491.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

运维锅总详解CPU

本文从CPU简介、衡量CPU性能指标、单核及多核CPU工作流程、如何平衡 CPU 性能和防止CPU过载、为什么计算密集型任务要选择高频率CPU、超线程技术、CPU历史演进及摩尔定律等方面对CPU进行详细分析。希望对您有所帮助&#xff01; 一、CPU简介 CPU&#xff08;中央处理器&#…

2024年马蹄杯专科组第三场初赛 解题报告 | 珂学家

前言 题解 VP了这场比赛&#xff0c;整体还是偏简单&#xff0c;最难的题是数论相关&#xff0c;算一道思维题。 也看了赛时榜单&#xff0c;除了数论&#xff0c;大模拟和图论题也是拦路虎。 打工人 有趣的一道数学题&#xff0c;有点绕 很像数列和 ∑ i 1 i n i n ∗ …

14-20 Vision Transformer用AI的画笔描绘新世界

概述 毫无疑问,目前最受关注且不断发展的最重要的主题之一是使用人工智能生成图像、视频和文本。大型语言模型 (LLM) 已展示出其在文本生成方面的卓越能力。它们在文本生成方面的许多问题已得到解决。然而,LLM 面临的一个主要挑战是它们有时会产生幻觉反应。 最近推出的新模…

06-6.4.5 关键路径

&#x1f44b; Hi, I’m Beast Cheng &#x1f440; I’m interested in photography, hiking, landscape… &#x1f331; I’m currently learning python, javascript, kotlin… &#x1f4eb; How to reach me --> 458290771qq.com 喜欢《数据结构》部分笔记的小伙伴可以…

Apispec,一个用于生成 OpenAPI(Swagger)规范的 Python 库

目录 01什么是 Apispec&#xff1f; 为什么选择 Apispec&#xff1f; 安装与配置 02Apispec 的基本用法 生成简单的 API 文档 1、创建 Apispec 实例 2、定义 API 路由和视图 3、添加路径到 Apispec 集成 Flask 和 Apispec 1、安装…

Buuctf之SimpleRev做法

首先&#xff0c;查个壳&#xff0c;64bit&#xff0c;那就丢进ida64中进行反编译进来之后&#xff0c;我们进入main函数&#xff0c;发现里面没什么东西&#xff0c;那就shiftf12搜索字符串&#xff0c;找到关键字符串&#xff0c;双击进入然后再选中该字符串&#xff0c;ctrl…

东莞惠州数据中心机房搬迁方案流程

进入21世纪以来&#xff0c;数据中心如雨后春笋般在各行各业兴建起来&#xff0c;经过近20年的投产运行&#xff0c;大量的数据中心机房存在容量不足、机房陈旧、设备老化无法支撑业务发展的情况&#xff0c;产生机房改造、搬迁需求。为安全、可靠地完成机房搬迁&#xff0c;减…

【JVM 的内存模型】

1. JVM内存模型 下图为JVM内存结构模型&#xff1a; 两种执行方式&#xff1a; 解释执行&#xff1a;JVM是由C语言编写的&#xff0c;其中有C解释器&#xff0c;负责先将Java语言解释翻译为C语言。缺点是经过一次JVM翻译&#xff0c;速度慢一点。JIT执行&#xff1a;JIT编译器…

7 动态规划

下面的例子不错&#xff1a; 对于动态规划&#xff0c;能学到不少东西&#xff1b; 你要清楚每一步都在做什么&#xff0c;划分细致就能够拆解清楚&#xff01; xk. - 力扣&#xff08;LeetCode&#xff09; labuladong的算法笔记-动态规划-CSDN博客 动态规划是一种强大的算法…

nginx的正向代理和反向代理以及tomcat

nginx的正向代理和反向代理&#xff1a; 正向代理以及缓存配置&#xff1a; 代理&#xff1a;客户端不再是直接访问服务端&#xff0c;通过代理服务器访问服务端。 正向代理&#xff1a;面向客户端&#xff0c;我们通过代理服务器的IP地址访问目标范围端。 服务端只知道代理…

绝区叁--如何在移动设备上本地运行LLM

随着大型语言模型 (LLM)&#xff08;例如Llama 2和Llama 3&#xff09;不断突破人工智能的界限&#xff0c;它们正在改变我们与周围技术的互动方式。这些模型早已集成到我们的手机中&#xff0c;但到目前为止&#xff0c;它们理解和处理请求的能力还非常有限。然而&#xff0c;…

【C++】模板进阶--保姆级解析(什么是非类型模板参数?什么是模板的特化?模板的特化如何应用?)

目录 一、前言 二、什么是C模板&#xff1f; &#x1f4a6;泛型编程的思想 &#x1f4a6;C模板的分类 三、非类型模板参数 ⚡问题引入⚡ ⚡非类型模板参数的使用⚡ &#x1f525;非类型模板参数的定义 &#x1f525;非类型模板参数的两种类型 &#x1f52…

使用 ESP32-WROOM + DHT11 做个无屏温湿度计

最近梅雨天&#xff0c;有个房间湿度很大&#xff0c;而我需要远程查看温湿度&#xff0c;所以无所谓有没有显示屏&#xff0c;某宝上的温湿度计都是带屏的&#xff0c;如果连WIFI查看温湿度操作也比较麻烦&#xff0c;还需要换电池&#xff0c;实在不能满足我的需求&#xff0…

剖析DeFi交易产品之UniswapV3:交易路由合约

本文首发于公众号&#xff1a;Keegan小钢 SwapRouter 合约封装了面向用户的交易接口&#xff0c;但不再像 UniswapV2Router 一样根据不同交易场景拆分为了那么多函数&#xff0c;UniswapV3 的 SwapRouter 核心就只有 4 个交易函数&#xff1a; exactInputSingle&#xff1a;指…

Vue进阶(四十五)Jest集成指南

文章目录 一、前言二、环境检测三、集成问题汇总四、拓展阅读 一、前言 在前期博文《Vue进阶&#xff08;八十八&#xff09;Jest》中&#xff0c;讲解了Jest基本用法及应用示例。一切顺利的话&#xff0c;按照文档集成应用即可&#xff0c;但是集成过程中遇到的问题可能五花八…

【WEB前端2024】3D智体编程:乔布斯3D纪念馆-第55课-芝麻开门(语音 识别 控制3D纪念馆开门 和 关门)

【WEB前端2024】3D智体编程&#xff1a;乔布斯3D纪念馆-第55课-芝麻开门&#xff08;语音识别控制3D纪念馆开门和关门&#xff09; 使用dtns.network德塔世界&#xff08;开源的智体世界引擎&#xff09;&#xff0c;策划和设计《乔布斯超大型的开源3D纪念馆》的系列教程。dtn…

KVM使用命令行添加新磁盘(注:支持热插拔)

1、使用qemu-img创建格式为qcow2的磁盘 [rootkvm ~]# qemu-img create -f qcow2 /var/lib/libvirt/images/test-disk.qcow2 15G 2、显示虚拟机硬盘列表&#xff0c;查看未使用的target [rootkvm ~]# virsh domblklist kvm-client 3、添加硬盘到kvm-client虚拟机中 [rootkvm…

SpringBoot | 大新闻项目后端(redis优化登录)

该项目的前篇内容的使用jwt令牌实现登录认证&#xff0c;使用Md5加密实现注册&#xff0c;在上一篇&#xff1a;http://t.csdnimg.cn/vn3rB 该篇主要内容&#xff1a;redis优化登录和ThreadLocal提供线程局部变量&#xff0c;以及该大新闻项目的主要代码。 redis优化登录 其实…

html+css+js图片手动轮播

源代码在界面图片后面 轮播演示用的几张图片是Bing上的&#xff0c;直接用的几张图片的URL&#xff0c;谁加载可能需要等一下&#xff0c;现实中替换成自己的图片即可 关注一下点个赞吧&#x1f604; 谢谢大佬 界面图片 源代码 <!DOCTYPE html> <html lang&quo…

C++继承初识

一。继承 1.继承本质是复用相同的代码&#xff08;属性&#xff09; 2.格式&#xff1a;class 类名&#xff1a;继承方式 父类 3.继承方式的规律&#xff1a; 父类的&#xff1a; 对于私有成员&#xff0c;不管哪种继承方式都不可见--->不想被子类继承的成员 对于保护…