Redis三种模式——主从复制、哨兵模式、集群

一、Redis模式

Redis有三种模式:分别是主从同步/复制哨兵模式Cluster

主从复制:主从复制是高可用Redis的基础,哨兵和群集都是在主从复制基础上实现高可用的。主从复制主要实现了数据的多机备份,以及对于读操作的负载均衡和简单故障恢复。
缺陷:故障恢复无法自动化,写操作无法负载均衡,存储能力受到单机的限制。
哨兵:在主从复制的基础上,哨兵实现了自动化的故障恢复。
缺陷:写操作无法负载均衡,存储能力受到单机的限制,哨兵无法对从节点进行自动故障转移;在读写分离场景下,从节点故障会导致读服务不可用,需要对从节点做额外的监控、切换操作。
集群:通过集群,Redis解决了写操作无法负载均衡,以及存储能力受到单机限制的问题,实现了较为完善的高可用方案。

二、Redis主从复制

2.1 主从复制概述

主从复制,是指将一台 Redis 服务器的数据,复制到其他的 Redis 服务器。前者称为主节点(Master),后者称为从节点(Slave);数据的复制是单向的,只能由主节点到从节点。
默认情况下,每台 Redis 服务器都是主节点;且一个主节点可以有多个从节点 (或没有从节点),但一个从节点只能有一个主节点。

2.2 主从复制

数据冗余:主从复制实现了数据的热备份,是持久化之外的一种数据冗余方式。

故障恢复:当主节点出现问题时,可以由从节点提供服务,实现快速的故障恢复;实际上是一种服务的冗余。

负载均衡:在主从复制的基础上,配合读写分离,可以由主节点提供写服务,由从节点提供读服务 (即写 Redis 数据时应用连接主节点,读 Redis 数据时应用连接从节点),分担服务器负载;尤其是在写少读多的场景下,通过多个从节点分担读负载,可以大大提高Redis服务器的并发量。

高可用基石:除了上述作用以外,主从复制还是哨兵和集群能够实施的基础,因此说主从复制是Redis高可用的基础。

2.3 Redis主从复制过程

  1. 若启动一个Slave机器进程,则它会向Master机器发送一个“sync command" 命令,请求同步连接。
  2. 无论是第一次连接还是重新连接,Master机器 都会启动一个后台进程,将数据快照保存到数据文件中(执行rdb操作) ,同时 Master 还会记录修改数据的所有命令并缓存在数据文件中。
  3. 后台进程完成缓存操作之后,Master 机器就会向 Slave 机器发送数据文件,Slave 端机器将数据文件保存到硬盘上,然后将其加载到内存中,接着 Master 机器就会将修改数据的所有操作一并发送给 Slave 端机器。若 Slave 出现故障导致宕机,则恢复正常后会自动重新连接。
  4. Master机器收到 Slave 端机器的连接后,将其完整的数据文件发送给 Slave 端机器,如果 Mater 同时收到多个 Slave 发来的同步请求,则 Master 会在后台启动一个进程以保存数据文件,然后将其发送给所有的 Slave 端机器,确保所有的 Slave 端机器都正常。

2.4 搭建Redis主从复制

2.4-1 环境部署

主机         系统            IP地址            所需安装包
Master节点    CentOS 7    192.168.154.10    redis-5.0.7.tar. gz
Slave1节点    CentOS 7    192.168.154.11    redis-5.0.7.tar. gz
Slave2节点    CentOS 7    192.168.154.12    redis-5.0.7.tar. gz
#三台主机都关闭防火墙和SELINUX
systemctl stop firewalld
systemctl disable firewalld
setenforce 0
#三台节点服务器都修改
#修改内核参数
vim /etc/sysctl.conf
vm.overcommit_memory = 1
net.core.somaxconn = 2048

sysctl -p



2.4-2 安装Redis

在三台机器上都安装Redis

#三台节点服务器都要安装
yum install -y gcc gcc-c++ make

tar zxvf /opt/redis-7.0.9.tar.gz -C /opt/
cd /opt/redis-7.0.9
make
make PREFIX=/usr/local/redis install
#由于Redis源码包中直接提供了 Makefile 文件,所以在解压完软件包后,不用先执行 ./configure 进行配置,可直接执行 make 与 make install 命令进行安装。

#三台节点服务器都要创建
#创建redis工作目录
mkdir /usr/local/redis/{conf,log,data}

cp /opt/redis-7.0.9/redis.conf /usr/local/redis/conf/

useradd -M -s /sbin/nologin redis
chown -R redis.redis /usr/local/redis/

#环境变量
vim /etc/profile 
PATH=$PATH:/usr/local/redis/bin        #增加一行

source /etc/profile



1

#定义systemd服务管理脚本
vim /usr/lib/systemd/system/redis-server.service
[Unit]
Description=Redis Server
After=network.target

[Service]
User=redis
Group=redis
Type=forking
TimeoutSec=0
PIDFile=/usr/local/redis/log/redis_6379.pid
ExecStart=/usr/local/redis/bin/redis-server /usr/local/redis/conf/redis.conf
ExecReload=/bin/kill -s HUP $MAINPID
ExecStop=/bin/kill -s QUIT $MAINPID
PrivateTmp=true

[Install]
WantedBy=multi-user.target


2.4-3 修改 Redis 配置文件(Master节点操作)

#192.168.154.10
vim /usr/local/redis/conf/redis.conf
bind 0.0.0.0                                    #87行,修改监听地址为0.0.0.0
protected-mode no                                #111行,将本机访问保护模式设置no
port 6379                                        #138行,Redis默认的监听6379端口
daemonize yes                                    #309行,设置为守护进程,后台启动
pidfile /usr/local/redis/log/redis_6379.pid        #341行,指定 PID 文件
logfile "/usr/local/redis/log/redis_6379.log"    #354行,指定日志文件
dir /usr/local/redis/data                        #504行,指定持久化文件所在目录
#requirepass abc123                                #1037行,可选,设置redis密码
appendonly yes                                    #1380行,开启AOF


systemctl restart redis-server.service

 

 2.4-4 修改 Redis 配置文件(Slave节点操作)

#192.168.154.11及192.168.154.12
vim /usr/local/redis/conf/redis.conf
bind 0.0.0.0                                    #87行,修改监听地址为0.0.0.0
protected-mode no                                #111行,将本机访问保护模式设置no
port 6379                                        #138行,Redis默认的监听6379端口
daemonize yes                                    #309行,设置为守护进程,后台启动
pidfile /usr/local/redis/log/redis_6379.pid        #341行,指定 PID 文件
logfile "/usr/local/redis/log/redis_6379.log"    #354行,指定日志文件
dir /usr/local/redis/data                        #504行,指定持久化文件所在目录
#requirepass abc123                                #1037行,可选,设置redis密码
appendonly yes                                    #1380行,开启AOF
replicaof 192.168.154.10 6379                    #528行,指定要同步的Master节点IP和端口
#masterauth abc123                                #535行,可选,指定Master节点的密码,仅在Master节点设置了requirepass


systemctl restart redis-server.service

2.4-5 验证主从效果

在Master节点上看日志:

tail -f /usr/local/redis/log/redis_6379.log 

在Master节点上验证从节点:

redis-cli info replication

创建数据验证

三、Redis 哨兵模式

主从切换技术的方法是:当服务器宕机后,需要手动一台从机切换为主机,这需要人工干预,不仅费时费力而且还会造成一段时间内服务不可用。为了解决主从复制的缺点,就有了哨兵机制。

哨兵的核心功能:在主从复制的基础上,哨兵引入了主节点的自动故障转移。

3.1 哨兵模式的作用

  • 监控:哨兵会不断地检查主节点和从节点是否运作正常。
  • 自动故障转移:当主节点不能正常工作时,哨兵会开始自动故障转移操作,它会将失效主节点的其中一个从节点升级为新的主节点,并让其它从节点改为复制新的主节点。
  • 通知(提醒):哨兵可以将故障转移的结果发送给客户端。

哨兵结构由两部分组成哨兵节点数据节点

  • 哨兵节点:哨兵系统由一个或多个哨兵节点组成,哨兵节点是特殊的redis节点,不存储数据。
  • 数据节点:主节点和从节点都是数据节点。

3.2 故障转移机制

1.由哨兵节点定期监控发现主节点是否出现了故障

每个哨兵节点每隔1秒会向主节点、从节点及其它哨兵节点发送一次ping命令做一次心跳检测。如果主节点在一定时间范围内不回复或者是回复一个错误消息,那么这个哨兵就会认为这个主节点主观下线了(单方面的)。当超过半数哨兵节点认为该主节点主观下线了,这样就客观下线了。

2.当主节点出现故障,

此时哨兵节点会通过Raft算法(选举算法)实现选举机制共同选举出一个哨兵节点为leader,来负责处理主节点的故障转移和通知。所以整个运行哨兵的集群的数量不得少于3个节点。

3.由leader哨兵节点执行故障转移,过程如下:

  • 将某一个从节点升级为新的主节点,让其它从节点指向新的主节点;
  • 若原主节点恢复也变成从节点,并指向新的主节点;
  • 通知客户端主节点已经更换。

需要特别注意的是,客观下线是主节点才有的概念;如果从节点和哨兵节点发生故障,被哨兵主观下线后,不会再有后续的客观下线和故障转移操作。

3.3 主节点的选举

  1. 过滤掉不健康的(已下线的),没有回复哨兵 ping 响应的从节点。
  2. 选择配置文件中从节点优先级配置最高的。(replica-priority,默认值为100)
  3. 选择复制偏移量最大,也就是复制最完整的从节点。

哨兵的启动依赖于主从模式,所以须把主从模式安装好的情况下再去做哨兵模式

3.4 搭建Redis 哨兵模式

Master节点:192.168.154.10
Slave1节点:192.168.154.11
Slave2节点:192.168.154.12

3.4-1 验证主从效果修改 Redis 哨兵模式的配置文件(所有节点操作)

cp /opt/redis-7.0.9/sentinel.conf /usr/local/redis/conf/
chown redis.redis /usr/local/redis/conf/sentinel.conf
vim /usr/local/redis/conf/sentinel.conf

protected-mode no                                    #6行,关闭保护模式
port 26379                                            #10行,Redis哨兵默认的监听端口
daemonize yes                                        #15行,指定sentinel为后台启动
pidfile /usr/local/redis/log/redis-sentinel.pid        #20行,指定 PID 文件
logfile "/usr/local/redis/log/sentinel.log"            #25行,指定日志存放路径
dir /usr/local/redis/data                            #54行,指定数据库存放路径
sentinel monitor mymaster 192.168.154.10 6379 2        #73行,修改 指定该哨兵节点监控192.168.154.10:6379这个主节点,该主节点的名称是mymaster,最后的2的含义与主节点的故障判定有关:至少需要2个哨兵节点同意,才能判定主节点故障并进行故障转移
#sentinel auth-pass mymaster abc123                    #76行,可选,指定Master节点的密码,仅在Master节点设置了requirepass
sentinel down-after-milliseconds mymaster 3000        #114行,判定服务器down掉的时间周期,默认30000毫秒(30秒)
sentinel failover-timeout mymaster 1154000            #214行,同一个sentinel对同一个master两次failover之间的间隔时间(1154秒)


3.4-2 启动哨兵模式

先启master,再启slave

cd /usr/local/redis/conf/
redis-sentinel sentinel.conf &

3.4-3 查看哨兵信息

192.168.154.10的master节点查看哨兵信息

redis-cli -p 26379 info Sentinel

3.4-4 故障模拟

查看redis-server进程号

ps -ef | grep redis

杀死 Master 节点上redis-server的进程号

#192.168.154.10
kill -9 63821            #Master节点上redis-server的进程号
#slave3节点查看主节点现在是哪个
redis-cli -p 26379 INFO Sentinel


四、Redis 群集模式

集群,即Redis Cluster,是Redis 3.0开始引入的分布式存储方案。

集群由多组节点(Node)组成,Redis的数据分布在这些节点中。集群中的节点分为主节点和从节点:只有主节点负责读写请求和集群信息的维护;从节点只进行主节点数据和状态信息的复制。

4.1 集群的作用

  1. 数据分区:数据分区(或称数据分片)是集群最核心的功能。集群将数据分散到多个节点,一方面突破了Redis单机内存大小的限制,存储容量大大增加;另一方面每个主节点都可以对外提供读服务和写服务,大大提高了集群的响应能力。Redis单机内存大小受限问题,在介绍持久化和主从复制时都有提及;例如,如果单机内存太大,bgsave和bgrewriteaof的fork操作可能导致主进程阻塞,主从环境下主机切换时可能导致从节点长时间无法提供服务,全量复制阶段主节点的复制缓冲区可能溢出。
  2. 高可用:集群支持主从复制和主节点的自动故障转移(与哨兵类似);当任一节点发生故障时,集群仍然可以对外提供服务。

4.2 Redis集群的数据分片

Redis集群引入了哈希槽的概念
Redis集群有16384个哈希槽(编号0-16383)
集群的每组节点负责一部分哈希槽
每个Key通过CRC16校验后对16384取余来决定放置哪个哈希槽,通过这个值,去找到对应的插槽所对应的节点,然后直接自动跳转到这个对应的节点上进行存取操作

以3个节点组成的集群为例:
节点A包含0到5460号哈希槽
节点B包含5461到10922号哈希槽
节点C包含10923到16383号哈希槽

Redis集群的主从复制模型
集群中具有A、B、C三个节点,如果节点B失败了,整个集群就会因缺少5461-10922这个范围的槽而不可以用。
为每个节点添加一个从节点A1、B1、C1整个集群便有三个Master节点和三个slave节点组成,在节点B失败后,集群选举B1位为的主节点继续服务。当B和B1都失败后,集群将不可用。

4.3 搭建Redis 群集模式

redis的集群一般需要6个节点,3主3从。方便起见,这里所有节点在同一台服务器上模拟:
以端口号进行区分:3个主节点端口号:6001/6002/6003,对应的从节点端口号:6004/6005/6006。

4.3-1 环境部署

192.168.154.10部署Redis

#关闭防火墙和SELINUX
systemctl stop firewalld
systemctl disable firewalld
setenforce 0
#修改内核参数
vim /etc/sysctl.conf
vm.overcommit_memory = 1
net.core.somaxconn = 2048

sysctl -p


4.3-2 安装Redis

yum install -y gcc gcc-c++ make

tar zxvf /opt/redis-7.0.9.tar.gz -C /opt/
cd /opt/redis-7.0.9
make
make PREFIX=/usr/local/redis install
#由于Redis源码包中直接提供了 Makefile 文件,所以在解压完软件包后,不用先执行 ./configure 进行配置,可直接执行 make 与 make install 命令进行安装。



#创建redis工作目录
mkdir /usr/local/redis/{conf,log,data}

cp /opt/redis-7.0.9/redis.conf /usr/local/redis/conf/

useradd -M -s /sbin/nologin redis
chown -R redis.redis /usr/local/redis/

#环境变量
vim /etc/profile 
PATH=$PATH:/usr/local/redis/bin        #增加一行

source /etc/profile



4.3-3 创建6个节点文件

cd /usr/local/redis/
mkdir -p redis-cluster/redis600{1..6}

for i in {1..6}
do
cp /opt/redis-7.0.9/redis.conf /usr/local/redis/redis-cluster/redis600$i
cp /opt/redis-7.0.9/src/redis-cli /opt/redis-7.0.9/src/redis-server /usr/local/redis/redis-cluster/redis600$i
done


4.3-4 开启群集功能

#其他5个文件夹的配置文件以此类推修改,注意6个端口都要不一样。
cd /usr/local/redis/redis-cluster/redis6001
vim redis.conf
#bind 127.0.0.1                                    #87行,注释掉bind项,默认监听所有网卡
protected-mode no                                #111行,关闭保护模式
port 6001                                        #138行,修改redis监听端口
daemonize yes                                    #309行,设置为守护进程,后台启动
pidfile /usr/local/redis/log/redis_6001.pid        #341行,指定 PID 文件
logfile "/usr/local/redis/log/redis_6001.log"    #354行,指定日志文件
dir ./                                            #504行,指定持久化文件所在目录
appendonly yes                                    #1379行,开启AOF
cluster-enabled yes                                #1576行,取消注释,开启群集功能
cluster-config-file nodes-6001.conf                #1584行,取消注释,群集名称文件设置
cluster-node-timeout 15000                        #1590行,取消注释群集超时时间设置

替换6002-6006文件快捷方法.

先将6001的redis.conf文件,替换到6002-6006里
for i in {1..6}
do
\cp -f redis.conf /usr/local/redis/redis-cluster/redis600$i
done

然后到各个配置文件里使用sed替换,如此类推

sed -n '/6001/p' redis.conf
sed -n 's/6001/6002/p' redis.conf
sed -i 's/6001/6002/p' redis.conf
sed -n '/6002/p' redis.conf

sed -n 's/6001/6003/p' redis.conf
sed -i 's/6001/6003/p' redis.conf
sed -n '/6003/p' redis.conf

sed -n 's/6001/6004/p' redis.conf
sed -i 's/6001/6004/p' redis.conf
sed -n '/6004/p' redis.conf

sed -n 's/6001/6005/p' redis.conf
sed -i 's/6001/6005/p' redis.conf
sed -n '/6005/p' redis.conf

sed -n 's/6001/6006/p' redis.conf
sed -i 's/6001/6006/p' redis.conf
sed -n '/6006/p' redis.conf
#启动redis节点
分别进入那六个文件夹,执行命令:redis-server redis.conf ,来启动redis节点
cd /usr/local/redis/redis-cluster/redis6001
redis-server redis.conf

for i in {1..6}
do
cd /usr/local/redis/redis-cluster/redis600$i
./redis-server redis.conf
done

ps -ef | grep redis

4.3-5 启动集群

redis-cli --cluster create 192.168.154.10:6001 192.168.154.10:6002 192.168.154.10:6003 192.168.154.10:6004 192.168.154.10:6005 192.168.154.10:6006 --cluster-replicas 1

六个实例分为三组,每组一主一从,前面的做主节点,后面的做从节点。下面交互的时候 需要输入 yes 才可以创建。
--replicas 1 表示每个主节点有1个从节点。


4.3-6 测试集群

redis-cli -h 192.168.154.10 -p 6001 -c   #加-c参数,节点之间就可以互相跳转

127.0.0.1:6001> cluster slots    #查看节点的哈希槽编号范围


对应的slave节点也有这条数据,但是别的节点没有

4.4 Cluster 集群增加节点动态扩容

已有集群为6个节点192.168.154.10:6001 - 192.168.154.10:6006,3组主从节点。现要增加第4组主从节点192.168.154.10:6007,192.168.154.10:6008

4.4-1 创建一个新的主节点和一个从节点

192.168.154.10:6007为主节点将192.168.154.10:6008创建为192.168.154.10:6007的从节点

cd ..
cp -a redis6001 redis6007
cp -a redis6001 redis6008
cd redis6007/
rm -rf appendonlydir/ nodes-6001.conf
sed -i 's/6001/6007/' redis.conf
sed -n '/6007/p' redis.conf
cd ..
cd redis6008
rm -rf appendonlydir/ nodes-6001.conf 
sed -i 's/6001/6008/' redis.conf
sed -n '/6008/p' redis.conf

cd ..
cd redis6007
./redis-server redis.conf 
cd ..
cd redis6008
./redis-server redis.conf 
ps aux | grep redis

命令里需要指定一个已有节点以便于获取集群信息,本例是指定的192.168.154.10:6001

redis-cli -h 192.168.154.10 -p 6001 --cluster add-node 192.168.154.10:6007 192.168.154.10:6001

redis-cli -h 192.168.154.10 -p 6001 --cluster add-node 192.168.154.10:6008 192.168.154.10:6001


redis-cli -h 192.168.154.10 -p 6001 
CLUSTER nodes  #查看node ID


4.4-2 将192.168.154.10:6008创建为192.168.154.10:6007的从节点,命令里需要指定一个已有节点以便于获取集群信息和主节点的node ID

redis-cli -h 192.168.154.10 -p 6008
192.168.154.10:6008> cluster replicate 082f30cde9799c551492390880b9c949e095a161
OK


4.4-3 新加入的主节点是没有槽数的,只有初始化集群的时候,才会根据主的数据分配好,如新增的主节点,需要手动分配

redis-cli -h 192.168.154.10 -p 6007 --cluster reshard 192.168.154.10:6001

redis-cli -h 192.168.154.10 -p 6001
192.168.154.10:6001> CLUSTER nodes

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/778098.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Linux安装达梦

文章目录 前言一、docker安装1.下载镜像2.导入镜像3.生成容器 二、ios安装1.环境准备2.iso安装3.配置实例4.注册服务5.启停服务 总结 前言 公司要求我将数据从oracle迁移到达梦数据库,这个国产数据库以前没用过,所以记录一下这次的安装过程。 一、docke…

Bahdanau 注意力中上下文变量 ′的公式解释

公式 (10.4.1) 是 Bahdanau 注意力模型中的一个关键公式,用于计算在解码时间步 ( t’ ) 的上下文变量 (\mathbf{c}_{t’}): [ \mathbf{c}{t’} \sum{t1}^T \alpha(\mathbf{s}_{t’ - 1}, \mathbf{h}_t) \mathbf{h}_t ] 下面对公式进行详细解释&#x…

7月6日 VueConf 技术大会即将在深圳举办

7月6日,VueConf 2024 即将在深圳召开,本次大会正值 Vue.js 十周年,旨在聚焦 Vue.js 社区的成员,分享最新的技术动态、经验以及创新实践。 本次参与 VueConf 大会的是来自全球 Vue.js 核心团队成员、行业专家及前端开发者。其中&a…

排序——数据结构与算法 总结8

目录 8.1 排序相关概念 8.2 插入排序 8.2.1 直接插入排序: 8.2.2 折半插入排序: 8.2.3 希尔排序: 8.3 交换排序 8.3.1 冒泡排序: 8.3.2 快速排序: 8.4 选择排序 8.4.1 简单选择排序 8.4.2 堆排序 8.5 归并…

基于LabVIEW的设备安装螺栓连接设计

介绍了一种基于LabVIEW的辅助设备安装螺栓连接设计案例。通过LabVIEW软件,实现了从螺栓规格预估、强度校核到物料选用的整个流程的软件化,提高了设计效率和安装可靠性。 项目背景 在轨道车辆设备安装中,螺栓连接作为一种常见的紧固方式&…

SpringBoot 中的参数校验:构建健壮应用的基石

前言 在开发Web应用时,处理用户输入是不可避免的一环。然而,用户输入往往充满不确定性,可能是格式不正确、类型不匹配,甚至包含恶意内容。为了确保应用的稳定性和安全性,对输入参数进行有效校验显得尤为重要。Spring …

Python中解决os.listdir命令读取文件乱序问题方法

Python中使用对话框批量打开文件时出现乱序问题的解决方法 一、问题描述二、os.listdir读取文件乱序问题解决方法 欢迎学习交流! 邮箱: z…1…6.com 网站: https://zephyrhours.github.io/ 一、问题描述 有时候为了方便,我们在进…

MySQL之备份与恢复(五)

备份与恢复 备份数据 符号分隔文件备份 可以使用SQL命令SELECT INTO OUTFILE以符号分隔文件格式创建数据的逻辑备份。(可以用mysqldump的 --tab选项导出到符号分隔文件中)。符号分隔文件包含以ASCII展示的原始数据,没有SQL、注释和列名。下面是一个导出为逗号分隔…

vb.netcad二开自学笔记3:启动与销毁

Imports Autodesk.AutoCAD.ApplicationServicesImports Autodesk.AutoCAD.EditorInputImports Autodesk.AutoCAD.RuntimePublic Class WellcomCADImplements IExtensionApplicationPublic Sub Initialize() Implements IExtensionApplication.InitializeMsgBox("net程序已…

ePTFE膜(膨体聚四氟乙烯膜)应用前景广阔 本土企业技术水平不断提升

ePTFE膜(膨体聚四氟乙烯膜)应用前景广阔 本土企业技术水平不断提升 ePTFE膜全称为膨体聚四氟乙烯膜,指以膨体聚四氟乙烯(ePTFE)为原材料制成的薄膜。ePTFE膜具有耐化学腐蚀、防水透气性好、耐候性佳、耐磨、抗撕裂等优…

【深度学习】-WASB-调试说明

要改这么几个地方: 代码仓库:/Desktop/code/python_project/WASB-SBDT-main/ 篮球数据集xx_xx_11.xml只保留最后一个11.xml 并把11下直接放置11 video: 这里的东西被我改了,要以仓库为准

git pull拉取显示Already up-to-date,但文件并没有更新

1、问题: 使用git pull拉取远程仓库代码,显示更新成功(Already up-to-date),但是本地代码没有更新 这是因为本地有尚未提交的更改,和远程代码有冲突导致无法更新 2、解决方法: 可以使用git s…

Fastjson首字母大小写问题

1、问题 使用Fastjson转json之后发现首字母小写。实体类如下: Data public class DataIdentity {private String BYDBSM;private String SNWRSSJSJ;private Integer CJFS 20; } 测试代码如下: public static void main(String[] args) {DataIdentit…

多个tomcat同时使用 不设置CATALINA_HOME环境变量

通常一台服务器只使用一个tomcat,设置一个CATALINA_HOME的环境变量。但有些时候需要一台服务器启动多个tomcat,那就不能设置CATALINA_HOME了!因为会串~ 我们可以在对应tomcat的startup.bat启动脚本中,加入对应的CATALINA_HOME。 …

Raylib 坐标系

draftx 符号调整为正数 发现采样坐标系原点0&#xff0c;0 在左上角&#xff0c;正方向 右&#xff0c;下 绘制坐标系 原点0&#xff0c;0 在左下角&#xff0c;正方向 右&#xff0c;上 拖拽可得 #include <raylib.h> // 重整原因&#xff1a;解决新函数放大缩小之下…

Appium+python自动化(四十一)-Appium自动化测试框架综合实践 - 即将落下帷幕(超详解)

1.简介 今天我们紧接着上一篇继续分享Appium自动化测试框架综合实践 - 代码实现。到今天为止&#xff0c;大功即将告成&#xff1b;框架所需要的代码实现都基本完成。 2.data数据封装 2.1使用背景 在实际项目过程中&#xff0c;我们的数据可能是存储在一个数据文件中&#x…

智慧交通运行监测与应急指挥中心方案

建设目标 建立感知层数据的实时采集以及数据处理&#xff0c;实现监测预警自动化和智能化&#xff1b;推动交通运输数据资源开放共享&#xff0c;打破数据资源壁垒&#xff0c;与城市各部门数据建立共享交换机制&#xff0c;实现应急指挥的协同化&#xff1b;充分运用大数据、互…

新产品或敏捷项目过程 SOP,附带流程图及流程规范

一、项目启动 项目背景和目标明确 市场调研结果分析&#xff0c;确定新产品的需求和市场机会。制定明确的项目目标&#xff0c;包括产品特性、上市时间、预期收益等。 组建项目团队 确定项目经理、产品经理、开发人员、测试人员、市场人员等角色。明确各成员的职责和权限。 项目…

Apache Seata应用侧启动过程剖析——注册中心与配置中心模块

本文来自 Apache Seata官方文档&#xff0c;欢迎访问官网&#xff0c;查看更多深度文章。 本文来自 Apache Seata官方文档&#xff0c;欢迎访问官网&#xff0c;查看更多深度文章。 Apache Seata应用侧启动过程剖析——注册中心与配置中心模块 前言 在Seata的应用侧&#xf…

Docker逃逸CVE-2019-5736、procfs云安全漏洞复现,全文5k字,超详细解析!

Docker容器挂载procfs 逃逸 procfs是展示系统进程状态的虚拟文件系统&#xff0c;包含敏感信息。直接将其挂载到不受控的容器内&#xff0c;特别是容器默认拥有root权限且未启用用户隔离时&#xff0c;将极大地增加安全风险。因此&#xff0c;需谨慎处理&#xff0c;确保容器环…