Wordcloud | 风中有朵雨做的‘词云‘哦!~

1写在前面

今天可算把key搞好了,不得不说🏥里手握生杀大权的人,都在自己的能力范围内尽可能的难为你。😂

我等小大夫也是很无奈,毕竟奔波霸霸波奔是要去抓唐僧的。 🤐

好吧,今天是词云Wordcloud)教程,大家都说简单,但实际操作起来又有一些难度,一起试试吧。😋

2用到的包

rm(list = ls())
library(tidyverse)
library(tm)
library(wordcloud)

3示例数据

这里我准备好了2个文件用于绘图,首先是第一个文件,每行含有n个词汇。🤣

dataset <- read.delim("./wordcloud/dataset.txt", header=FALSE)

DT::datatable(dataset)
alt

接着是第2个文件,代表dataset文件中每一行的label。🥸

dataset_labels <- read.delim("./wordcloud/labels.txt",header=FALSE)
dataset_labels <- dataset_labels[,1]
dataset_labels_p <- paste("class",dataset_labels,sep="_")
unique_labels <- unique(dataset_labels_p)

unique_labels
alt

4数据初步整理

然后我们利用sapply函数把数据整理成list。😘

可能会有小伙伴问sapplylapply有什么区别呢!?😂

oksapply()函数与lapply()函数类似,但返回的是一个简化的对象,例如向量或矩阵。😜

如果应用函数的结果具有相同的长度和类型,则sapply()函数将返回一个向量。

如果结果具有不同的长度或类型,则sapply()函数将返回一个矩阵。😂

dataset_s <- sapply(unique_labels,function(label) list( dataset[dataset_labels_p %in% label,1] ) )

str(dataset_s)
alt

5数据整理成Corpus

接着我们把上面整理好的list中每个元素都整理成一个单独的Corpus。🤩

dataset_corpus <- lapply(dataset_s, function(x) Corpus(VectorSource( toString(x) )))

然后再把Cporus合并成一个。🧐

dataset_corpus_all <- dataset_corpus

6去除部分词汇

修饰一下, 去除标点、数字、无用的词汇等等。😋

dataset_corpus_all <- lapply(dataset_corpus_all, tm_map, removePunctuation)
dataset_corpus_all <- lapply(dataset_corpus_all, tm_map, removeNumbers)
dataset_corpus_all <- lapply(dataset_corpus_all, tm_map, function(x) removeWords(x,stopwords("english")))

words_to_remove <- c("said","from","what","told","over","more","other","have",
"last","with","this","that","such","when","been","says",
"will","also","where","why","would","today")

dataset_corpus_all <- lapply(dataset_corpus_all, tm_map, function(x)removeWords(x, words_to_remove))

7计算term matrix并去除部分词汇

document_tm <- TermDocumentMatrix(dataset_corpus_all)
document_tm_mat <- as.matrix(document_tm)
colnames(document_tm_mat) <- unique_labels
document_tm_clean <- removeSparseTerms(document_tm, 0.8)
document_tm_clean_mat <- as.matrix(document_tm_clean)
colnames(document_tm_clean_mat) <- unique_labels

# 去除长度小于4的term
index <- as.logical(sapply(rownames(document_tm_clean_mat), function(x) (nchar(x)>3) ))
document_tm_clean_mat_s <- document_tm_clean_mat[index,]

head(document_tm_clean_mat_s)
alt

8可视化

8.1 展示前500个词汇

comparison.cloud(document_tm_clean_mat_s, 
max.words=500,
random.order=F,
use.r.layout = F,
scale = c(10,0.4),
title.size=1.4,
title.bg.colors = "white"
)
alt

8.2 展示前2000个词汇

comparison.cloud(document_tm_clean_mat_s,
max.words=2000,
random.order=F,
use.r.layout = T,
scale = c(6,0.4),
title.size=1.4,
title.bg.colors = "white"
)
alt

8.3 展示前2000个common词汇

commonality.cloud(document_tm_clean_mat_s, 
max.words=2000,
random.order=F)
alt

alt
最后祝大家早日不卷!~

点个在看吧各位~ ✐.ɴɪᴄᴇ ᴅᴀʏ 〰

📍 往期精彩

📍 🤩 LASSO | 不来看看怎么美化你的LASSO结果吗!?
📍 🤣 chatPDF | 别再自己读文献了!让chatGPT来帮你读吧!~
📍 🤩 WGCNA | 值得你深入学习的生信分析方法!~
📍 🤩 ComplexHeatmap | 颜狗写的高颜值热图代码!
📍 🤥 ComplexHeatmap | 你的热图注释还挤在一起看不清吗!?
📍 🤨 Google | 谷歌翻译崩了我们怎么办!?(附完美解决方案)
📍 🤩 scRNA-seq | 吐血整理的单细胞入门教程
📍 🤣 NetworkD3 | 让我们一起画个动态的桑基图吧~
📍 🤩 RColorBrewer | 再多的配色也能轻松搞定!~
📍 🧐 rms | 批量完成你的线性回归
📍 🤩 CMplot | 完美复刻Nature上的曼哈顿图
📍 🤠 Network | 高颜值动态网络可视化工具
📍 🤗 boxjitter | 完美复刻Nature上的高颜值统计图
📍 🤫 linkET | 完美解决ggcor安装失败方案(附教程)
📍 ......

本文由 mdnice 多平台发布

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/77776.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Mathematica 与 Matlab 常见复杂指令集汇编

Mathematica 常见指令汇编 Mathematica 常见指令 NDSolve 求解结果的保存 sol NDSolve[{y[x] x^2, y[0] 0, g[x] -y[x]^2, g[0] 1}, {y, g}, {x, 0, 1}]; numericSoly sol[[1, 1, 2]]; numericSolg sol[[1, 2, 2]]; data Table[{x, numericSoly[x], numericSolg[x]},…

PG常用SQL

数据库 创建数据库 PostgreSQL 创建数据库可以用以下三种方式&#xff1a; 1、使用 CREATE DATABASE SQL 语句来创建。2、使用 createdb 命令来创建。3、使用 pgAdmin 工具。 CREATE DATABASE 创建数据库 CREATE DATABASE 命令需要在 PostgreSQL 命令窗口来执行&#xff0…

【会议征稿信息】第二届信息学,网络与计算技术国际学术会议(ICINC2023)

2023年第二届信息学&#xff0c;网络与计算技术国际学术会议(ICINC2023) 2023 2nd International Conference on Informatics,Networking and Computing (ICINC 2023) 2023年第二届信息学&#xff0c;网络与计算技术国际学术会议(ICINC2023)将于2023年10月27-29日于中国武汉召…

【第二阶段】kotlin的函数类型作为返回类型

fun main() {//调用,返回的是一个匿名类型&#xff0c;所以info就是一个匿名函数val infoshow("",0)//info接受的返回值为匿名类型&#xff0c;此时info就是一个匿名函数println(info("kotlin",20)) }//返回类型为一个匿名函数的返回类型fun show(name:Str…

内网穿透-外远程连接中的RabbitMQ服务

文章目录 前言1.安装erlang 语言2.安装rabbitMQ3. 内网穿透3.1 安装cpolar内网穿透(支持一键自动安装脚本)3.2 创建HTTP隧道 4. 公网远程连接5.固定公网TCP地址5.1 保留一个固定的公网TCP端口地址5.2 配置固定公网TCP端口地址 前言 RabbitMQ是一个在 AMQP(高级消息队列协议)基…

音视频FAQ(三):音画不同步

摘要 本文介绍了音画不同步问题的五个因素&#xff1a;编码和封装阶段、网络传输阶段、播放器中的处理阶段、源内容产生的问题以及转码和编辑。针对这些因素&#xff0c;提出了相应的解决方案&#xff0c;如使用标准化工具、选择强大的传输协议、自适应缓冲等。此外&#xff0…

P1123 取数游戏

取数游戏 题目描述 一个 N M N\times M NM 的由非负整数构成的数字矩阵&#xff0c;你需要在其中取出若干个数字&#xff0c;使得取出的任意两个数字不相邻&#xff08;若一个数字在另外一个数字相邻 8 8 8 个格子中的一个即认为这两个数字相邻&#xff09;&#xff0c;求…

Mac如何打开隐藏文件中Redis的配置文件redis.conf

Redis下载(通过⬇️博客下载的Redis默认路径为&#xff1a;/usr/local/etc) Redis下载 1.打开终端进入/usr文件夹 cd /usr 2.打开/local/文件夹 open local 3.找到redis.conf并打开,即可修改配置信息

ApiPost设置全局令牌

为了避免请求接口每次都要请求登录&#xff0c;获取令牌鉴权&#xff0c;我们可以设置全局令牌&#xff08;token&#xff09;&#xff0c;避免处处单独使用令牌&#xff0c;造成环境混乱&#xff0c;使用如下&#xff1a; 接口设置 我们先配置好请求接口和请求参数&#xff0…

内网穿透实战应用——【通过cpolar分享本地电脑上有趣的照片:发布piwigo网页】

通过cpolar分享本地电脑上有趣的照片&#xff1a;发布piwigo网页 文章目录 通过cpolar分享本地电脑上有趣的照片&#xff1a;发布piwigo网页前言1. 设定一条内网穿透数据隧道2. 与piwigo网站绑定3. 在创建隧道界面填写关键信息4. 隧道创建完成 总结 前言 首先在本地电脑上部署…

4.0 Spring Boot入门

1. Spring Boot概述 Spring Boot介绍 Spring Boot是Pivotal团队在2014年推出的全新框架&#xff0c;主要用于简化Spring项目的开发过程&#xff0c;可以使用最少的配置快速创建Spring项目。 Spring Boot版本 2014年4月v1.0.0.RELEASE发布。 ​ 2.Spring Boot特性 约定优于配…

NGINX负载均衡及LVS-DR负载均衡集群

目录 LVS-DR原理搭建过程nginx 负载均衡 LVS-DR原理 原理&#xff1a; 1. 当用户向负载均衡调度器&#xff08;Director Server&#xff09;发起请求&#xff0c;调度器将请求发往至内核空间 2. PREROUTING链首先会接收到用户请求&#xff0c;判断目标IP确定是本机IP&#xff…

STABLE DIFFUSION模型及插件的存放路径

记录下学习SD的一些心得&#xff0c;使用的是秋叶大佬的集成webui&#xff0c;下载了之后点击启动器即可开启&#xff0c;文件夹中的内容如下 主模型存放在models文件下的stable-diffusion文件夹内&#xff0c;一些扩展类的插件是存放在extensions文件夹下

MapReduce介绍

目录 ​一、什么是MapReduce 二、MapReduce 的设计思想 2.1 分而治之 2.2 构建抽象模型&#xff1a;Map和Reduce 2.3 隐藏系统层细节 三、MapReduce 的框架原理 3.1 MRv1工作原理 3.1.1 MRv1架构工作原理图 3.1.1.1 流程说明 3.1.1.1.1 作业的提交 3.1.1.1.2 作业的初始化 3…

在线吉他调音

先看效果&#xff08;图片没有声&#xff0c;可以下载源码看看&#xff0c;比这更好~&#xff09;&#xff1a; 再看代码&#xff08;查看更多&#xff09;&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8&quo…

稳如磐石!亿级别MySQL大表迁移的解密

MySQL 作为当前应用最广泛的开源关系型数据库之一&#xff0c;具有高性能、稳定性和易用性等特性&#xff0c;是许多网站、应用和商业产品的主要数据存储。在一些场景中&#xff0c;如果出现单表行数上亿的情况&#xff0c;就可能需要开发和 DBA 对大表进行优化&#xff1a;分表…

水库大坝安全监测系统实施方案

一、方案概述 水库大坝作为特殊的建筑&#xff0c;其安全性质与房屋等建筑物完全不同&#xff0c;并且建造在地质构造复杂、岩土特性不均匀的地基上&#xff0c;目前对于大坝监测多采用人工巡查的方法&#xff0c;存在一定的系统误差&#xff0c;其工作性态和安全状况随时都在变…

KU Leuven TU Berlin 推出“RobBERT”,一款荷兰索塔 BERT

荷兰语是大约24万人的第一语言&#xff0c;也是近5万人的第二语言&#xff0c;是继英语和德语之后第三大日耳曼语言。来自比利时鲁汶大学和柏林工业大学的一组研究人员最近推出了基于荷兰RoBERTa的语言模型RobBERT。 谷歌的BERT&#xff08;来自Transformers的B idirectional …

如何做好会员管理,有哪些好用的会员管理系统?

会员管理对于企业或中小商户来说非常重要&#xff0c;会员管理可以建立和维护与顾客之间的紧密关系&#xff0c;通过会员管理系统记录和分析会员的购买历史、偏好和行为&#xff0c;可以更好地了解他们的需求和兴趣&#xff0c;增加销售机会和满意度。 那么我们应该如何做好会员…

java-JVM内存区域JVM运行时内存

一. JVM 内存区域 JVM 内存区域主要分为线程私有区域【程序计数器、虚拟机栈、本地方法区】、线程共享区域【JAVA 堆、方法区】、直接内存。线程私有数据区域生命周期与线程相同, 依赖用户线程的启动/结束 而 创建/销毁(在 HotspotVM 内, 每个线程都与操作系统的本地线程直接映…