动手学深度学习(Pytorch版)代码实践 -循环神经网络-51序列模型

51序列模型

import torch
from torch import nn
from d2l import torch as d2l
import matplotlib.pyplot as plt

T = 1000  # 总共产生1000个点
time = torch.arange(1, T + 1, dtype=torch.float32)
x = torch.sin(0.01 * time) + torch.normal(mean=0, std=0.2, size=(T,))
d2l.plot(time, [x], 'time', 'x', xlim=[1, 1000], figsize=(6, 3))
plt.show()

tau = 4
features = torch.zeros((T - tau, tau)) # torch.Size([996, 4])
for i in range(tau):
    # features 矩阵的每一行将包含时间序列中连续 tau 个时间步的数据
    features[:, i] = x[i: T - tau + i]
"""
x = [x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, ...]
features = [
 [x0, x1, x2, x3],
 [x1, x2, x3, x4],
 [x2, x3, x4, x5],
 [x3, x4, x5, x6],
 [x4, x5, x6, x7],
 [x5, x6, x7, x8],
 ...
]
"""
labels = x[tau:].reshape((-1, 1))

batch_size, n_train = 16, 600
# 只有前n_train个样本用于训练
train_iter = d2l.load_array((features[:n_train], labels[:n_train]),
                            batch_size, is_train=True)

# 初始化网络权重的函数
def init_weights(m):
    if type(m) == nn.Linear:
        nn.init.xavier_uniform_(m.weight)

# 一个简单的多层感知机
def get_net():
    net = nn.Sequential(nn.Linear(4, 10),
                        nn.ReLU(),
                        nn.Linear(10, 1))
    net.apply(init_weights)
    return net

# 平方损失。注意:MSELoss计算平方误差时不带系数1/2
loss = nn.MSELoss(reduction='none')

def train(net, train_iter, loss, epochs, lr):
    trainer = torch.optim.Adam(net.parameters(), lr)
    for epoch in range(epochs):
        for X, y in train_iter:
            trainer.zero_grad()
            l = loss(net(X), y)
            l.sum().backward()
            trainer.step()
        print(f'epoch {epoch + 1}, '
              f'loss: {d2l.evaluate_loss(net, train_iter, loss):f}')

net = get_net()
train(net, train_iter, loss, 10, 0.01)
# epoch 8, loss: 0.044640
# epoch 9, loss: 0.045863
# epoch 10, loss: 0.045066


# 单步预测 
onestep_preds = net(features) #对输入特征 features 进行单步预测。
d2l.plot([time, time[tau:]],
         [x.detach().numpy(), onestep_preds.detach().numpy()], 'time',
         'x', legend=['data', '1-step preds'], xlim=[1, 1000],
         figsize=(6, 3))
"""
[time, time[tau:]]:表示 x 轴的数据。time 是完整的时间序列,time[tau:] 是从第 tau 个时间步开始的时间序列,长度为 T - tau。
[x.detach().numpy(), onestep_preds.detach().numpy()]:
    表示 y 轴的数据。x 是实际的时间序列数据,onestep_preds 是神经网络的预测结果。
    使用 detach().numpy() 将 PyTorch 张量转换为 NumPy 数组,以便绘图函数可以处理。
'time':x 轴的标签,表示时间。
'x':y 轴的标签,表示时间序列数据的值。
legend=['data', '1-step preds']:图例,分别标记实际数据和单步预测。
xlim=[1, 1000]:设置 x 轴的范围,从 1 到 1000。
figsize=(6, 3):设置图的大小,宽度为 6 英寸,高度为 3 英寸。
"""
plt.show()


# 多步预测
multistep_preds = torch.zeros(T) # 用于存储多步预测的结果
multistep_preds[: n_train + tau] = x[: n_train + tau]
# 将 x 的前 n_train + tau 个元素复制到 multistep_preds 的对应位置。
# 这样做是为了在进行多步预测之前,保留训练集和前 tau 个时间步的数据。
for i in range(n_train + tau, T): # 从 n_train + tau 开始到 T,逐步进行预测。
    multistep_preds[i] = net(
        multistep_preds[i - tau:i].reshape((1, -1)))

d2l.plot([time, time[tau:], time[n_train + tau:]],
         [x.detach().numpy(), onestep_preds.detach().numpy(),
          multistep_preds[n_train + tau:].detach().numpy()], 'time',
         'x', legend=['data', '1-step preds', 'multistep preds'],
         xlim=[1, 1000], figsize=(6, 3))
plt.show()


# 生成特征矩阵进行多步预测
max_steps = 64 # 最大预测步数为64
features = torch.zeros((T - tau - max_steps + 1, tau + max_steps))

# tau 列是时间序列 x 的观测数据,而后 max_steps 列是基于前面列的预测结果。
# 列i(i<tau)是来自x的观测,其时间步从(i)到(i+T-tau-max_steps+1)
for i in range(tau):
    features[:, i] = x[i: i + T - tau - max_steps + 1]
# 列i(i>=tau)是来自(i-tau+1)步的预测,其时间步从(i)到(i+T-tau-max_steps+1)
for i in range(tau, tau + max_steps):
    features[:, i] = net(features[:, i - tau:i]).reshape(-1)


steps = (1, 4, 16, 64)
d2l.plot([time[tau + i - 1: T - max_steps + i] for i in steps],
         [features[:, (tau + i - 1)].detach().numpy() for i in steps], 'time', 'x',
         legend=[f'{i}-step preds' for i in steps], xlim=[5, 1000],
         figsize=(6, 3))
plt.show()

"""
1-step 预测:每一步预测只预测下一个时间步的数据。模型每次使用的是最近的观测数据进行预测。
4-step 预测:每一步预测预测接下来的四个时间步的数据。模型需要预测四步后的数据。
16-step 预测:每一步预测预测接下来的十六个时间步的数据。模型需要预测更远的未来数据。
64-step 预测:每一步预测预测接下来的六十四个时间步的数据。模型需要预测很远的未来数据。
"""

单步预测:
在这里插入图片描述

多步预测:
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/776527.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【IT领域新生必看】Java编程中的神奇对比:深入理解`equals`与`==`的区别

文章目录 引言什么是操作符&#xff1f;基本数据类型的比较示例&#xff1a; 引用类型的比较示例&#xff1a; 什么是equals方法&#xff1f;equals方法的默认实现示例&#xff1a; 重写equals方法示例&#xff1a; equals与的区别比较内容不同示例&#xff1a; 使用场景不同示…

CSS position属性之relative和absolute

目录 1 参考文章2 五个属性值3 position:static4 position:relative&#xff08;相对&#xff09;5 position:absolute&#xff08;绝对&#xff09; 1 参考文章 https://blog.csdn.net/lalala_dxf/article/details/123566909 https://blog.csdn.net/WangMinGirl/article/deta…

番外篇 | 手把手教你如何去更换YOLOv5的检测头为IDetect | 源于RCS-YOLO

前言:Hello大家好,我是小哥谈。凭借速度和准确性之间的出色平衡,YOLO框架已成为最有效的目标检测算法之一。然而,在脑肿瘤检测中很少研究使用YOLO网络的性能。对此本文提出了一种基于RCS-YOLO的重新参数化卷积的新型YOLO架构。与YOLOv7相比,RCS-YOLO的精度提高了2.6%,推理…

MWC上海展 | 创新微MinewSemi携ME54系列新品亮相Nordic展台

6月28日&#xff0c; 2024MWC上海圆满落幕&#xff0c;此次盛会吸引了来自全球124个国家及地区的近40,000名与会者。本届大会以“未来先行&#xff08;Future First&#xff09;”为主题&#xff0c;聚焦“超越5G”“人工智能经济”“数智制造”三大子主题&#xff0c;探索讨论…

苹果电脑清理app垃圾高效清理,无需专业知识

在我们的日常使用中&#xff0c;苹果电脑以其优雅的设计和强大的功能赢得了广泛的喜爱。然而&#xff0c;即便是最高效的设备&#xff0c;也无法免俗地积累各种不必要的文件和垃圾&#xff0c;特别是app垃圾。所以&#xff0c;苹果电脑清理app垃圾高效清理&#xff0c;对于大多…

数据的存储方式——大小端序

大小端存储的故事源自于《格列佛游记》&#xff08;Gullivers Travels&#xff09;&#xff0c;这是爱尔兰作家乔纳森斯威夫特&#xff08;Jonathan Swift&#xff09;于1726年所著的一部讽刺小说。在其中&#xff0c;主人公格列佛&#xff08;Lemuel Gulliver&#xff09;游历…

三相感应电机的建模仿真(2)基于ABC相坐标系S-Fun的仿真模型

1. 概述 2. 三相感应电动机状态方程式 3. 基于S-Function的仿真模型建立 4. 瞬态分析实例 5. 总结 6. 参考文献 1. 概述 前面建立的三相感应电机在ABC相坐标系下的数学模型是一组周期性变系数微分方程&#xff08;其电感矩阵是转子位置角的函数&#xff0c;转子位置角随时…

【Python】基于KMeans的航空公司客户数据聚类分析

&#x1f490;大家好&#xff01;我是码银~&#xff0c;欢迎关注&#x1f490;&#xff1a; CSDN&#xff1a;码银 公众号&#xff1a;码银学编程 实验目的和要求 会用Python创建Kmeans聚类分析模型使用KMeans模型对航空公司客户价值进行聚类分析会对聚类结果进行分析评价 实…

面向物联网行业的异常监控追踪技术解决方案:技术革新与运维保障

在现代高度数字化和互联的环境中&#xff0c;物联网技术已经深入到我们生活的方方面面。特别是在家庭和工业环境中&#xff0c;物联网系列通讯作为连接各类设备的关键枢纽&#xff0c;其稳定性和可靠性显得尤为重要。本文将介绍一种创新的监控系统&#xff0c;旨在实时跟踪和分…

用Python轻松转换PDF为CSV

数据的可访问性和可操作性是数据管理的核心要素。PDF格式因其跨平台兼容性和版面固定性&#xff0c;在文档分享和打印方面表现出色&#xff0c;尤其适用于报表、调查结果等数据的存储。然而&#xff0c;PDF的非结构化特性限制了其在数据分析领域的应用。相比之下&#xff0c;CS…

DFS之剪枝与优化——AcWing 165. 小猫爬山

DFS之剪枝与优化 定义 DFS之剪枝与优化指的是在执行深度优先搜索(DFS, Depth-First Search)时&#xff0c;采取的一系列策略来减少搜索空间&#xff0c;避免无效计算&#xff0c;从而加速找到问题的解。剪枝是指在搜索过程中&#xff0c;当遇到某些条件不符合解的要求或者可以…

Day05-02-Jenkins-pipeline

Day05-02-Jenkins-pipeline 1. Jenkins-Pipeline概述1) pipeline? 2. pipeline格式3. 小试牛刀4. Java上线的项目4.1 流程汇总4.2 根据流程书写pipeline架构4.3 分步实现1&#xff09;拉取代码2&#xff09;检查,编译,部署 4.4 完整pipeline代码 5. 根据tag标签拉取代码(了解自…

FreeBSD@ThinkPad x250因电池耗尽关机后无法启动的问题存档

好几次碰到电池耗尽FreeBSD关机&#xff0c;再启动&#xff0c;网络通了之后到了该出Xwindows窗体的时候&#xff0c;屏幕灭掉&#xff0c;网络不通&#xff0c;只有风扇在响&#xff0c;启动失败。关键是长按开关键后再次开机&#xff0c;还是启动失败。 偶尔有时候重启到单人…

温州网站建设方案及报价

随着互联网的发展&#xff0c;网站建设已经成为企业推广和营销的重要手段。温州作为中国经济发达地区之一&#xff0c;各行各业企业纷纷意识到网站建设的重要性&#xff0c;纷纷加大网站建设工作的投入。那么&#xff0c;温州网站建设方案及报价是怎样的呢&#xff1f;下面我们…

深入理解C# log4Net日志框架:功能、使用方法与性能优势

文章目录 1、log4Net的主要特性2、log4Net框架详解配置日志级别 3、log4Net的使用示例4、性能优化与对比5、总结与展望 在软件开发过程中&#xff0c;日志记录是一个不可或缺的功能。它可以帮助开发者追踪错误、监控应用程序性能&#xff0c;以及进行调试。在C#生态系统中&…

C#运算符重载

1、运算符重载 运算符重载是指重定义C#内置的运算符。 程序员也可以使用用户自定义类型的运算符。重载运算符是具有特殊名称的函数&#xff0c;是通过关键字 operator 后跟运算符的符号来定义的。与其他函数一样&#xff0c;重载运算符有返回类型和参数列表。 2、在Box类中定义…

C++ volatile 关键字

C volatile &#xff08;只有release下才会生效&#xff09; 1、告诉编译器volatile修饰的变量不要进行指令顺序的优化&#xff0c;以保证代码编写者的真实意图&#xff1b; int a 0;int b 10;int c 100;int* p &a;p &b;p &c;如果不加volatile修饰 p , 编译…

团队编程:提升代码质量与知识共享的利器

目录 前言1. 什么是团队编程&#xff1f;1.1 团队编程的起源1.2 团队编程的工作流程 2. 团队编程的优势2.1 提高代码质量2.2 促进知识共享2.3 增强团队协作2.4 提高开发效率 3. 团队编程的挑战3.1 开发成本较高3.2 需要良好的团队协作3.3 个人风格和习惯的差异3.4 长时间的集中…

AI时代算法面试:揭秘高频算法问题与解答策略

三种决策树算法的特点和区别 ID3算法&#xff1a;基本的决策树算法&#xff0c;适用于简单的分类问题C4.5算法&#xff1a;改进了ID3算法&#xff0c;适用于更复杂的分类问题&#xff0c;可以处理连续型数据和缺失值CART算法&#xff1a;更加通用的决策树算法&#xff0c;适用于…

【机器学习】机器学习与自然语言处理的融合应用与性能优化新探索

引言 自然语言处理&#xff08;NLP&#xff09;是计算机科学中的一个重要领域&#xff0c;旨在通过计算机对人类语言进行理解、生成和分析。随着深度学习和大数据技术的发展&#xff0c;机器学习在自然语言处理中的应用越来越广泛&#xff0c;从文本分类、情感分析到机器翻译和…