【机器学习】机器学习与自然语言处理的融合应用与性能优化新探索

引言

自然语言处理(NLP)是计算机科学中的一个重要领域,旨在通过计算机对人类语言进行理解、生成和分析。随着深度学习和大数据技术的发展,机器学习在自然语言处理中的应用越来越广泛,从文本分类、情感分析到机器翻译和对话系统,都展示了强大的能力。本文将详细介绍机器学习在自然语言处理中的应用,包括数据预处理、模型选择、模型训练和性能优化。通过具体的案例分析,展示机器学习技术在自然语言处理中的实际应用,并提供相应的代码示例。
在这里插入图片描述

第一章:机器学习在自然语言处理中的应用

1.1 数据预处理

在自然语言处理应用中,数据预处理是机器学习模型成功的关键步骤。文本数据通常具有非结构化和高维度的特点,需要进行清洗、分词、去停用词和特征提取等处理。

1.1.1 数据清洗

数据清洗包括去除噪声、标点符号、HTML标签等无关内容。

import re

def clean_text(text):
    # 去除HTML标签
    text = re.sub(r'<.*?>', '', text)
    # 去除标点符号
    text = re.sub(r'[^\w\s]', '', text)
    # 去除数字
    text = re.sub(r'\d+', '', text)
    # 转换为小写
    text = text.lower()
    return text

# 示例文本
text = "<html>This is a sample text with 123 numbers and <b>HTML</b> tags.</html>"
cleaned_text = clean_text(text)
print(cleaned_text)
1.1.2 分词

分词是将文本拆分为单独的单词或词组,是自然语言处理中的基础步骤。

import nltk
from nltk.tokenize import word_tokenize

# 下载NLTK数据包
nltk.download('punkt')

# 分词
tokens = word_tokenize(cleaned_text)
print(tokens)
1.1.3 去停用词

停用词是指在文本处理中被过滤掉的常见词,如“的”、“是”、“在”等。去除停用词可以减少噪声,提高模型的训练效果。

from nltk.corpus import stopwords

# 下载停用词数据包
nltk.download('stopwords')

# 去停用词
stop_words = set(stopwords.words('english'))
filtered_tokens = [word for word in tokens if word not in stop_words]
print(filtered_tokens)
1.1.4 特征提取

特征提取将文本数据转换为数值特征,常用的方法包括词袋模型(Bag of Words)、TF-IDF和词嵌入(Word Embedding)等。

from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer

# 词袋模型
vectorizer = CountVectorizer()
X_bow = vectorizer.fit_transform([' '.join(filtered_tokens)])
print(X_bow.toarray())

# TF-IDF
tfidf_vectorizer = TfidfVectorizer()
X_tfidf = tfidf_vectorizer.fit_transform([' '.join(filtered_tokens)])
print(X_tfidf.toarray())

1.2 模型选择

在自然语言处理中,常用的机器学习模型包括朴素贝叶斯、支持向量机(SVM)、循环神经网络(RNN)、长短期记忆网络(LSTM)和Transformer等。不同模型适用于不同的任务和数据特征,需要根据具体应用场景进行选择。

1.2.1 朴素贝叶斯

朴素贝叶斯适用于文本分类任务,特别是新闻分类和垃圾邮件检测等场景。

from sklearn.naive_bayes import MultinomialNB
from sklearn.model_selection import train_test_split

# 数据分割
X = X_tfidf
y = [1]  # 示例标签
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 训练朴素贝叶斯模型
model = MultinomialNB()
model.fit(X_train, y_train)

# 预测与评估
y_pred = model.predict(X_test)
1.2.2 支持向量机

支持向量机适用于文本分类任务,特别是在高维数据和小样本数据中表现优异。

from sklearn.svm import SVC

# 训练支持向量机模型
model = SVC()
model.fit(X_train, y_train)

# 预测与评估
y_pred = model.predict(X_test)
1.2.3 循环神经网络

循环神经网络(RNN)适用于处理序列数据,能够捕捉文本中的上下文信息,常用于文本生成和序列标注任务。

from keras.models import Sequential
from keras.layers import SimpleRNN, Dense

# 构建循环神经网络模型
model = Sequential()
model.add(SimpleRNN(50, activation='relu', input_shape=(X_train.shape[1], 1)))
model.add(Dense(1, activation='sigmoid'))

# 编译模型
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

# 训练模型
model.fit(X_train, y_train, epochs=10, batch_size=32, validation_split=0.2)
1.2.4 长短期记忆网络

长短期记忆网络(LSTM)是RNN的一种改进版本,能够有效解决长距离依赖问题,适用于文本生成、序列标注和机器翻译等任务。

from keras.layers import LSTM

# 构建长短期记忆网络模型
model = Sequential()
model.add(LSTM(50, activation='relu', input_shape=(X_train.shape[1], 1)))
model.add(Dense(1, activation='sigmoid'))

# 编译模型
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

# 训练模型
model.fit(X_train, y_train, epochs=10, batch_size=32, validation_split=0.2)
1.2.5 Transformer

Transformer是近年来在自然语言处理领域取得突破性进展的模型,广泛应用于机器翻译、文本生成和问答系统等任务。

from transformers import BertTokenizer, TFBertForSequenceClassification
from tensorflow.keras.optimizers import Adam

# 加载预训练的BERT模型和分词器
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = TFBertForSequenceClassification.from_pretrained('bert-base-uncased')

# 编译模型
optimizer = Adam(learning_rate=3e-5)
model.compile(optimizer=optimizer, loss=model.compute_loss, metrics=['accuracy'])

# 数据预处理
train_encodings = tokenizer(list(X_train), truncation=True, padding=True, max_length=128)
test_encodings = tokenizer(list(X_test), truncation=True, padding=True, max_length=128)

# 训练模型
model.fit(dict(train_encodings), y_train, epochs=3, batch_size=32, validation_data=(dict(test_encodings), y_test))

在这里插入图片描述

1.3 模型训练

模型训练是机器学习的核心步骤,通过优化算法最小化损失函数,调整模型参数,使模型在训练数据上表现良好。常见的优化算法包括梯度下降、随机梯度下降和Adam优化器等。

1.3.1 梯度下降

梯度下降通过计算损失函数对模型参数的导数,逐步调整参数,使损失函数最小化。

import numpy as np

# 定义损失函数
def loss_function(y_true, y_pred):
    return np.mean((y_true - y_pred) ** 2)

# 梯度下降优化
def gradient_descent(X, y, learning_rate=0.01, epochs=1000):
    m, n = X.shape
    theta = np.zeros(n)
    for epoch in range(epochs):
        gradient = (1/m) * X.T.dot(X.dot(theta) - y)
        theta -= learning_rate * gradient
    return theta

# 训练模型
theta = gradient_descent(X_train, y_train)
1.3.2 随机梯度下降

随机梯度下降在每次迭代中使用一个样本进行参数更新,具有较快的收敛速度和更好的泛化能力。

def stochastic_gradient_descent(X, y, learning_rate=0.01, epochs=1000):
    m, n = X.shape
    theta = np.zeros(n)
    for epoch in range(epochs):
        for i in range(m):
            gradient = X[i].dot(theta) - y[i]
            theta -= learning_rate * gradient * X[i]
    return theta

# 训练模型
theta = stochastic_gradient_descent(X_train, y_train)
1.3.3 Adam优化器

Adam优化器结合了动量和自适应学习率的优

点,能够快速有效地优化模型参数。

from keras.optimizers import Adam

# 编译模型
model.compile(optimizer=Adam(learning_rate=0.001), loss='binary_crossentropy', metrics=['accuracy'])

# 训练模型
model.fit(X_train, y_train, epochs=10, batch_size=32, validation_split=0.2)

1.4 模型评估与性能优化

模型评估是衡量模型在测试数据上的表现,通过计算模型的准确率、召回率、F1-score等指标,评估模型的性能。性能优化包括调整超参数、增加数据量和模型集成等方法。

1.4.1 模型评估指标

常见的模型评估指标包括准确率(Accuracy)、精确率(Precision)、召回率(Recall)和F1-score等。

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score

# 计算评估指标
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred, average='weighted')
recall = recall_score(y_test, y_pred, average='weighted')
f1 = f1_score(y_test, y_pred, average='weighted')

print(f'Accuracy: {accuracy}')
print(f'Precision: {precision}')
print(f'Recall: {recall}')
print(f'F1-score: {f1}')
1.4.2 超参数调优

通过网格搜索(Grid Search)和随机搜索(Random Search)等方法,对模型的超参数进行调优,找到最优的参数组合。

from sklearn.model_selection import GridSearchCV

# 定义超参数网格
param_grid = {
    'C': [0.1, 1, 10],
    'gamma': [0.001, 0.01, 0.1],
    'kernel': ['linear', 'rbf']
}

# 网格搜索
grid_search = GridSearchCV(estimator=SVC(), param_grid=param_grid, cv=5, scoring='accuracy')
grid_search.fit(X_train, y_train)

# 输出最优参数
best_params = grid_search.best_params_
print(f'Best parameters: {best_params}')

# 使用最优参数训练模型
model = SVC(**best_params)
model.fit(X_train, y_train)

# 预测与评估
y_pred = model.predict(X_test)
1.4.3 增加数据量

通过数据增强和采样技术,增加训练数据量,提高模型的泛化能力和预测性能。

from imblearn.over_sampling import SMOTE

# 数据增强
smote = SMOTE(random_state=42)
X_resampled, y_resampled = smote.fit_resample(X_train, y_train)

# 训练模型
model.fit(X_resampled, y_resampled)

# 预测与评估
y_pred = model.predict(X_test)
1.4.4 模型集成

通过模型集成的方法,将多个模型的预测结果进行组合,提高模型的稳定性和预测精度。常见的模型集成方法包括Bagging、Boosting和Stacking等。

from sklearn.ensemble import VotingClassifier

# 构建模型集成
ensemble_model = VotingClassifier(estimators=[
    ('nb', MultinomialNB()),
    ('svm', SVC(kernel='linear', probability=True)),
    ('rf', RandomForestClassifier())
], voting='soft')

# 训练集成模型
ensemble_model.fit(X_train, y_train)

# 预测与评估
y_pred = ensemble_model.predict(X_test)

在这里插入图片描述

第二章:自然语言处理的具体案例分析

2.1 情感分析

情感分析是通过分析文本内容,识别其中的情感倾向,广泛应用于社交媒体分析、市场调研和客户反馈等领域。以下是情感分析的具体案例分析。

2.1.1 数据预处理

首先,对情感分析数据集进行预处理,包括数据清洗、分词、去停用词和特征提取。

# 示例文本数据
texts = [
    "I love this product! It's amazing.",
    "This is the worst experience I've ever had.",
    "I'm very happy with the service.",
    "The quality is terrible."
]
labels = [1, 0, 1, 0]  # 1表示正面情感,0表示负面情感

# 数据清洗
cleaned_texts = [clean_text(text) for text in texts]

# 分词
tokenized_texts = [word_tokenize(text) for text in cleaned_texts]

# 去停用词
filtered_texts = [' '.join([word for word in tokens if word not in stop_words]) for tokens in tokenized_texts]

# 特征提取
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(filtered_texts)
2.1.2 模型选择与训练

选择合适的模型进行训练,这里以朴素贝叶斯为例。

# 数据分割
X_train, X_test, y_train, y_test = train_test_split(X, labels, test_size=0.2, random_state=42)

# 训练朴素贝叶斯模型
model = MultinomialNB()
model.fit(X_train, y_train)

# 预测与评估
y_pred = model.predict(X_test)
2.1.3 模型评估与优化

评估模型的性能,并进行超参数调优和数据增强。

# 评估模型
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred)
recall = recall_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred)

print(f'Accuracy: {accuracy}')
print(f'Precision: {precision}')
print(f'Recall: {recall}')
print(f'F1-score: {f1}')

# 超参数调优
param_grid = {
    'alpha': [0.1, 0.5, 1.0]
}
grid_search = GridSearchCV(estimator=MultinomialNB(), param_grid=param_grid, cv=5, scoring='accuracy')
grid_search.fit(X_train, y_train)
best_params = grid_search.best_params_
print(f'Best parameters: {best_params}')

# 使用最优参数训练模型
model = MultinomialNB(**best_params)
model.fit(X_train, y_train)

# 数据增强
smote = SMOTE(random_state=42)
X_resampled, y_resampled = smote.fit_resample(X_train, y_train)
model.fit(X_resampled, y_resampled)

# 预测与评估
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred)
recall = recall_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred)

print(f'Optimized Accuracy: {accuracy}')
print(f'Optimized Precision: {precision}')
print(f'Optimized Recall: {recall}')
print(f'Optimized F1-score: {f1}')

2.2 文本分类

文本分类是通过分析文本内容,将文本分配到预定义的类别中,广泛应用于新闻分类、垃圾邮件检测和主题识别等领域。以下是文本分类的具体案例分析。

2.2.1 数据预处理
# 示例文本数据
texts = [
    "The stock market is performing well today.",
    "A new study shows the health benefits of coffee.",
    "The local sports team won their game last night.",
    "There is a new movie released this weekend."
]
labels = [0, 1, 2, 3]  # 示例标签,分别表示金融、健康、体育和娱乐

# 数据清洗
cleaned_texts = [clean_text(text) for text in texts]

# 分词
tokenized_texts = [word_tokenize(text) for text in cleaned_texts]

# 去停用词
filtered_texts = [' '.join([word for word in tokens if word not in stop_words]) for tokens in tokenized_texts]

# 特征提取
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(filtered_texts)
2.2.2 模型选择与训练

选择合适的模型进行训练,这里以支持向量机为例。

# 数据分割
X_train, X_test, y_train, y_test = train_test_split(X, labels, test_size=0.2, random_state=42)

# 训练支持向量机模型
model = SVC(kernel='linear')
model.fit(X_train, y_train)

# 预测与评估
y_pred = model.predict(X_test)
2.2.3 模型评估与优化

评估模型的性能,并进行超参数调优和数据增强。

# 评估模型
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred, average='weighted')
recall = recall_score(y_test, y_pred, average='weighted')
f1 = f1_score(y_test, y_pred, average='weighted')

print(f'Accuracy: {accuracy}')
print(f'Precision: {precision}')
print(f'Recall:

 {recall}')
print(f'F1-score: {f1}')

# 超参数调优
param_grid = {
    'C': [0.1, 1, 10],
    'gamma': [0.001, 0.01, 0.1],
    'kernel': ['linear', 'rbf']
}
grid_search = GridSearchCV(estimator=SVC(), param_grid=param_grid, cv=5, scoring='accuracy')
grid_search.fit(X_train, y_train)
best_params = grid_search.best_params_
print(f'Best parameters: {best_params}')

# 使用最优参数训练模型
model = SVC(**best_params)
model.fit(X_train, y_train)

# 数据增强
smote = SMOTE(random_state=42)
X_resampled, y_resampled = smote.fit_resample(X_train, y_train)
model.fit(X_resampled, y_resampled)

# 预测与评估
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred, average='weighted')
recall = recall_score(y_test, y_pred, average='weighted')
f1 = f1_score(y_test, y_pred, average='weighted')

print(f'Optimized Accuracy: {accuracy}')
print(f'Optimized Precision: {precision}')
print(f'Optimized Recall: {recall}')
print(f'Optimized F1-score: {f1}')

2.3 机器翻译

机器翻译是通过分析和理解源语言文本,生成目标语言文本,广泛应用于跨语言交流和信息传播等领域。以下是机器翻译的具体案例分析。

2.3.1 数据预处理
# 示例文本数据
source_texts = [
    "Hello, how are you?",
    "What is your name?",
    "I love learning new languages.",
    "Goodbye!"
]
target_texts = [
    "Hola, ¿cómo estás?",
    "¿Cuál es tu nombre?",
    "Me encanta aprender nuevos idiomas.",
    "¡Adiós!"
]

# 数据清洗
cleaned_source_texts = [clean_text(text) for text in source_texts]
cleaned_target_texts = [clean_text(text) for text in target_texts]

# 分词
tokenized_source_texts = [word_tokenize(text) for text in cleaned_source_texts]
tokenized_target_texts = [word_tokenize(text) for text in cleaned_target_texts]

# 创建词汇表
source_vocab = set(word for sentence in tokenized_source_texts for word in sentence)
target_vocab = set(word for sentence in tokenized_target_texts for word in sentence)

# 词汇表到索引的映射
source_word_to_index = {word: i for i, word in enumerate(source_vocab)}
target_word_to_index = {word: i for i, word in enumerate(target_vocab)}

# 将文本转换为索引
def text_to_index(text, word_to_index):
    return [word_to_index[word] for word in text if word in word_to_index]

indexed_source_texts = [text_to_index(sentence, source_word_to_index) for sentence in tokenized_source_texts]
indexed_target_texts = [text_to_index(sentence, target_word_to_index) for sentence in tokenized_target_texts]
2.3.2 模型选择与训练

选择合适的模型进行训练,这里以LSTM为例。

from keras.models import Model
from keras.layers import Input, LSTM, Dense, Embedding

# 定义编码器
encoder_inputs = Input(shape=(None,))
encoder_embedding = Embedding(len(source_vocab), 256)(encoder_inputs)
encoder_lstm = LSTM(256, return_state=True)
encoder_outputs, state_h, state_c = encoder_lstm(encoder_embedding)
encoder_states = [state_h, state_c]

# 定义解码器
decoder_inputs = Input(shape=(None,))
decoder_embedding = Embedding(len(target_vocab), 256)(decoder_inputs)
decoder_lstm = LSTM(256, return_sequences=True, return_state=True)
decoder_outputs, _, _ = decoder_lstm(decoder_embedding, initial_state=encoder_states)
decoder_dense = Dense(len(target_vocab), activation='softmax')
decoder_outputs = decoder_dense(decoder_outputs)

# 构建模型
model = Model([encoder_inputs, decoder_inputs], decoder_outputs)

# 编译模型
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

# 数据准备
X_train_source = np.array(indexed_source_texts)
X_train_target = np.array(indexed_target_texts)

# 训练模型
model.fit([X_train_source, X_train_target], y_train, epochs=10, batch_size=32, validation_split=0.2)
2.3.3 模型评估与优化

评估模型的性能,并进行超参数调优和数据增强。

# 评估模型
loss, accuracy = model.evaluate([X_test_source, X_test_target], y_test)
print(f'Accuracy: {accuracy}')

# 超参数调优
param_grid = {
    'batch_size': [16, 32, 64],
    'epochs': [10, 20, 30]
}
grid_search = GridSearchCV(estimator=model, param_grid=param_grid, cv=5, scoring='accuracy')
grid_search.fit([X_train_source, X_train_target], y_train)
best_params = grid_search.best_params_
print(f'Best parameters: {best_params}')

# 使用最优参数训练模型
model = model.set_params(**best_params)
model.fit([X_train_source, X_train_target], y_train, epochs=10, validation_data=([X_test_source, X_test_target], y_test))

# 数据增强
smote = SMOTE(random_state=42)
X_resampled, y_resampled = smote.fit_resample(X_train_source, y_train)
model.fit([X_resampled, X_train_target], y_resampled)

# 预测与评估
y_pred = model.predict([X_test_source, X_test_target])

在这里插入图片描述

第三章:性能优化与前沿研究

3.1 性能优化

3.1.1 特征工程

通过特征选择、特征提取和特征构造,优化模型的输入,提高模型的性能。

from sklearn.feature_selection import SelectKBest, f_classif

# 特征选择
selector = SelectKBest(score_func=f_classif, k=10)
X_selected = selector.fit_transform(X, y)
3.1.2 超参数调优

通过网格搜索和随机搜索,找到模型的最优超参数组合。

from sklearn.model_selection import RandomizedSearchCV

# 随机搜索
param_dist = {
    'n_estimators': [50, 100, 150],
    'max_depth': [3, 5, 7, 10],
    'min_samples_split': [2, 5, 10]
}
random_search = RandomizedSearchCV(estimator=RandomForestClassifier(), param_distributions=param_dist, n_iter=10, cv=5, scoring='accuracy')
random_search.fit(X_train, y_train)
best_params = random_search.best_params_
print(f'Best parameters: {best_params}')

# 使用最优参数训练模型
model = RandomForestClassifier(**best_params)
model.fit(X_train, y_train)

# 预测与评估
y_pred = model.predict(X_test)
3.1.3 模型集成

通过模型集成,提高模型的稳定性和预测精度。

from sklearn.ensemble import StackingClassifier

# 构建模型集成
stacking_model = StackingClassifier(estimators=[
    ('nb', MultinomialNB()),
    ('svm', SVC(kernel='linear', probability=True)),
    ('rf', RandomForestClassifier())
], final_estimator=LogisticRegression())

# 训练集成模型
stacking_model.fit(X_train, y_train)

# 预测与评估
y_pred = stacking_model.predict(X_test)

3.2 前沿研究

3.2.1 自监督学习在自然语言处理中的应用

自监督学习通过生成伪标签进行训练,提高模型的表现,特别适用于无监督数据的大规模训练。

3.2.2 增强学习在自然语言处理中的应用

增强学习通过与环境的交互,不断优化策略,在对话系统和问答系统中具有广泛的应用前景。

3.2.3 多模态学习与跨领域应用

多模态学习通过结合文本、图像和音频等多种模态,提高模型的理解能力,推动自然语言处理技术在跨领域中的应用。

结语

机器学习作为自然语言处理领域的重要技术,已经在多个应用场景中取得了显著的成果。通过对数据的深入挖掘和模型的不断优化,机器学习技术将在自然语言处理中发挥更大的作用,推动语言理解和生成技术的发展。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/776486.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

VBA常用的字符串内置函数

前言 在VBA程序中&#xff0c;常用的内置函数可以按照功能分为字符串函数、数字函数、转换函数等等&#xff0c;本节主要会介绍常用的字符串的内置函数&#xff0c;包括Len()、Left()、Mid()、Right()、Split()、String()、StrConV()等。 本节的练习数据表以下表为例&#xff…

前后端的导入、导出、模板下载等写法

导入&#xff0c;导出、模板下载等的前后端写法 文章目录 导入&#xff0c;导出、模板下载等的前后端写法一、导入实现1.1 后端的导入1.2 前端的导入 二、基础的模板下载2.1 后端的模板下载-若依基础版本2.2 前端的模板下载2.3 后端的模板下载 - 基于资源文件读取2.4 excel制作…

使用maven搭建一个SpingBoot项目

1.首先创建一个maven项目 注意选择合适的jdk版本 2.添加依赖 2.在pom.xml中至少添加依赖 spring-boot-starter-web 依赖&#xff0c;目的是引入Tomcat&#xff0c;以及SpringMVC等&#xff0c;使项目具有web功能。 <!-- 引入 包含tomcat&#xff0c;SpringMVC&#xff0c…

二维Gamma分布的激光点云去噪

目录 1、Gamma 分布简介2、实现步骤 1、Gamma 分布简介 Gamma 分布在合成孔径雷达( Synthetic Aperture &#xff32;adar&#xff0c;SA&#xff32;) 图像分割中具有广泛应用&#xff0c;较好的解决了SA&#xff32; 图像中相干斑噪声对图像分割的影响。采用二维Gamma 分布对…

配置基于不同端口的虚拟主机

更改配置文件&#xff0c;添加三个不同端口的虚拟主机 <directory /www> allowoverride none require all granted </directory><virtualhost 192.168.209.136:80> documentroot /www servername 192.168.209.136 </virtualhost><virtualhost 192.…

详解yolov5的网络结构

转载自文章 网络结构图&#xff08;简易版和详细版&#xff09; 此图是博主的老师&#xff0c;杜老师的图 网络框架介绍 前言&#xff1a; YOLOv5是一种基于轻量级卷积神经网络&#xff08;CNN&#xff09;的目标检测算法&#xff0c;整体可以分为三个部分&#xff0c; ba…

Floyd判圈算法——环形链表(C++)

Floyd判圈算法(Floyd Cycle Detection Algorithm)&#xff0c;又称龟兔赛跑算法(Tortoise and Hare Algorithm)&#xff0c;是一个可以在有限状态机、迭代函数或者链表上判断是否存在环&#xff0c;求出该环的起点与长度的算法。 …

实验四 图像增强—灰度变换之直方图变换

一&#xff0e;实验目的 1&#xff0e;掌握灰度直方图的概念及其计算方法&#xff1b; 2&#xff0e;熟练掌握直方图均衡化计算过程&#xff1b;了解直方图规定化的计算过程&#xff1b; 3&#xff0e;了解色彩直方图的概念和计算方法 二&#xff0e;实验内容&#xff1a; …

【雷丰阳-谷粒商城 】【分布式高级篇-微服务架构篇】【19】认证服务03—分布式下Session共享问题

持续学习&持续更新中… 守破离 【雷丰阳-谷粒商城 】【分布式高级篇-微服务架构篇】【19】分布式下Session共享问题 session原理分布式下session共享问题Session共享问题解决—session复制Session共享问题解决—客户端存储Session共享问题解决—hash一致性Session共享问题…

嵌入式linux面试1

1. linux 1.1. Window系统和Linux系统的区别 linux区分大小写windows在dos&#xff08;磁盘操作系统&#xff09;界面命令下不区分大小写&#xff1b; 1.2. 文件格式区分 windows用扩展名区分文件&#xff1b;如.exe代表执行文件&#xff0c;.txt代表文本文件&#xff0c;.…

Seatunnel本地模式快速测验

前言 SeaTunnel&#xff08;先前称为WaterDrop&#xff09;是一个分布式、高性能、易于扩展的数据集成平台&#xff0c;旨在实现海量数据的同步和转换。它支持多种数据处理引擎&#xff0c;包括Apache Spark和Apache Flink&#xff0c;并在某个版本中引入了自主研发的Zeta引擎…

【c++】通过写一个C++函数来模拟跨境洗钱和系统警告

效果图&#xff1a; 源码&#xff1a; #include <iostream> #include <cstdlib> #include <ctime> #include <iomanip> #include <chrono> #include <thread> // 引入线程头文件#ifdef _WIN32 // 确保只在Windows上包含Windows.h #inclu…

zigbee笔记:六、看门狗定时器(Watch Dog)

一、看门狗基础 1、看门狗功能&#xff1a; 由于单片机的工作常常会受到来自外界电磁场的干扰&#xff0c;造成各种寄存器和内存的数据混乱&#xff0c;会导致程序指针错误等&#xff0c;程序运行可能会陷入死循环。程序的正常运行被打断&#xff0c;由单片机控制的系统无法继…

芯片的PPA-笔记

写在前面&#xff1a;这个仅记录自己对芯片PPA的一些思考&#xff0c;不一定正确&#xff0c;还请各位网友思辨的看待&#xff0c;欢迎大家谈谈自己的想法。 1 此次笔记的起因 记录的原因&#xff1a;自己在整理这段时间的功耗总结&#xff0c;又看到工艺对功耗的影响&#x…

12.SQL注入-盲注基于时间(base on time)

SQL注入-盲注基于时间(base on time) boolian的盲注类型还有返回信息的状态&#xff0c;但是基于时间的盲注就什么都没有返回信息。 输入payload语句进行睡5秒中&#xff0c;通过开发这工具查看时间&#xff0c;如图所示&#xff0c;会在5秒钟后在执行&#xff0c;因此存在基于…

面试篇-系统设计题总结

文章目录 1、设计一个抢红包系统1.1 高可用的解决方案&#xff1a;1.2 抢红包系统的设计1.3 其他 2、秒杀系统设计 这里记录一些有趣的系统设计类的题目&#xff0c;一般大家比较喜欢出的设计类面试题目会和高可用系统相关比如秒杀和抢红包等。欢迎大家在评论中评论自己遇到的题…

磁钢生产领域上下料解决方案

随着智能制造技术的不断革新&#xff0c;磁钢生产领域正逐步引入自动化生产线。然而&#xff0c;传统的人工上下料方式存在诸多问题&#xff0c;难以满足现代生产需求。富唯智能提出了一款复合机器人磁钢上下料解决方案&#xff0c;通过先进的自动化技术&#xff0c;提高生产效…

填报高考志愿,怎样正确地选择大学专业?

大学专业的选择&#xff0c;会关系到未来几年甚至一辈子的发展方向。这也是为什么很多人结束高考之后就开始愁眉苦脸&#xff0c;因为他们不知道应该如何选择大学专业&#xff0c;生怕一个错误的决定会影响自己一生。 毋庸置疑&#xff0c;在面对这种选择的时候&#xff0c;我…

Keycloak SSO 如何验证已添加的 SPN 是否生效

使用 Kerberos Ticket 验证&#xff1a; 在客户端计算机上&#xff0c;运行以下命令以获取 Kerberos Ticket&#xff1a; klist检查是否存在与 HTTP/yourdomain.com 相关的票证。如果存在&#xff0c;说明 SPN 已生效。 测试应用程序&#xff1a; 使用具有 HTTP/yourdomain.com…

windows USB 设备驱动开发-控制传输的数据包

每次在主机控制器和 USB 设备之间移动数据时&#xff0c;都会发生传输。 通常&#xff0c;USB 传输可大致分为控制传输和数据传输。 所有 USB 设备都必须支持控制传输&#xff0c;并且可以支持用于数据传输的端点。 每种类型的传输都与设备缓冲区USB 端点 的类型相关联。 控制传…