图像处理中的二维傅里叶变换

图像处理中的二维傅里叶变换

问题来源是对彩色图像进行压缩时得出的傅里叶系数的图像如何解释,导入图片,转化为灰度图片:
#彩色图片一般是由RGB组成,其实就是3个二维数组叠加而成,当R=G=B时,彩色图片就会变成一种灰度颜色,所以灰度颜色的图片其实就是一个二维数组 #灰度化处理总共有三种方法:最大值法、平均值法、加权平均法 A = imread(os.path.join('..','DATA','jelly.jpg')) Abw = np.mean(A, -1); # 转化为灰度图像也可以通过cv2库或者plt, #0:压缩行,对各列求均值,返回 1* n 矩阵,axis =1 :压缩列,对各行求均值,返回 m *1 矩阵
接下来利用快速傅里叶变换,求解二维矩阵(每个变量是灰度值)的傅里叶系数,将所得的绘制在对数坐标系中:At = np.fft.fft2(Abw)#计算二维的傅里叶变换 F = np.log(np.abs(np.fft.fftshift(At))+1) # 将图像中的低频部分移动到图像的中心;将 FFT 置于对数刻度上。得到的图像如下:
灰度图像与傅里叶系数下面介绍一下二维傅里叶变换:连续的傅里叶变换为: F ( u , v ) = ∫ − ∞ ∞ ∫ − ∞ ∞ f ( x , y ) e − 2 π i ( u x + v y ) , d x , d y F(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{-2\pi i(ux+vy)} , dx , dy F(u,v)=f(x,y)e2πi(ux+vy),dx,dy离散的傅里叶变换为: F ( u , v ) = 1 M N ∑ x = 0 M − 1 ∑ y = 0 N − 1 f ( x , y ) e − i 2 π ( u x / M + v y / N ) F(u,v)=\frac{1}{\sqrt{MN}}\sum_{x=0}^{M-1}\sum_{y=0}^{N-1}f(x,y)\mathrm{e}^{-i2\pi(ux/M+vy/N)} F(u,v)=MN 1x=0M1y=0N1f(x,y)ei2π(ux/M+vy/N)各变量的具体意义如下:
f ( x , y ) f(x,y) f(x,y):输入图像的灰度矩阵,即空间域中的图像,也就是灰度值。
F ( u , v ) F(u,v) F(u,v):变换后的复矩阵,表示频率域中的图像。其实部和虚部分别代表频率分量的幅度和相位。
x , y x,y x,y:空间域中的坐标,代表图像中的像素位置,取值范围都是从 0 ∼ M − 1 0 \sim M-1 0M1 0 ∼ N − 1 0\sim N-1 0N1
u , v u,v u,v:频率域中的坐标,代表图像中的频率分量。
M , N M,N M,N:图像的尺寸,即灰度矩阵的宽度和高度。
i i i:虚数单位。
u u u v v v是频率域中的坐标变量,它们分别代表了图像在水平方向和垂直方向上的频率分量。这些频率分量是图像中不同空间频率的正弦波和余弦波的叠加结果, u u u v v v的取值范围和 x , y x,y x,y相同。
下面说一下具体意义:傅里叶变换的物理意义是将图像的灰度分布函数变换为图像的频率分布函数。图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。如:大面积的沙漠在图像中是一片灰度变化缓慢的区域,对应的频率值很低;而对于地表属性变换剧烈的边缘区域在图像中是一片灰度变化剧烈的区域,对应的频率值较高。
图像的频谱是图像灰度变化强度的指标,是灰度在平面空间中的梯度。 二维傅里叶变换算法的运行速度很慢的,算法的时间复杂度为O(n^ 4)。在实际应用中,由于直接计算二维离散傅里叶变换的计算量较大,通常会采用快速傅里叶变换(Fast Fourier Transform, FFT)算法来提高计算效率。FFT算法通过减少不必要的计算来加速DFT的计算过程,是图像处理中常用的傅里叶变换实现方法。此外,在图像处理中,还经常对DFT的结果进行中心化处理(即将频率域的原点移动到矩阵的中心),以便于观察和分析频谱的对称性。中心化后的频谱图通常能够更直观地展示图像的频率分布特征。
如上图右所示,利用快速傅里叶变换并且将低频部分移动到中心。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/774908.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【线性代数的本质】矩阵与线性变换

线性变化要满足两点性质: 直线(连续的点)在变换后还是直线。原点不变。 假设有坐标轴(基底) i ^ \widehat{i} i 和 j ^ \widehat{j} j ​: i ^ [ 1 0 ] , j ^ [ 0 1 ] \widehat{i}\begin{bmatrix} 1 \…

【leetcode】双指针算法题

文章目录 1.算法思想2.移动零3.复写零方法一方法二 4.快乐数5.盛水最多的容器方法一(暴力求解)方法二(左右指针) 6.有效三角形的个数方法一(暴力求解)方法二(左右指针) 7.两数之和8.…

ONLYOFFICE 8.1版本震撼来袭,让办公更高效、更智能

官网链接: 在线PDF查看器和转换器 | ONLYOFFICE 在线办公套件 | ONLYOFFICE 随着科技的不断发展,办公软件已经成为现代企业提高工作效率、实现信息共享的重要工具。在我国,一款名为ONLYOFFICE的在线办公套件受到了越来越多企业的青睐。今天…

Prompt-Free Diffusion: Taking “Text” out of Text-to-Image Diffusion Models

CVPR2024 SHI Labshttps://arxiv.org/pdf/2305.16223https://github.com/SHI-Labs/Prompt-Free-Diffusion 问题引入 在SD模型的基础之上,去掉text prompt,使用reference image作为生成图片语义的指导,optional structure image作为生成图片…

深入理解【 String类】

目录 1、String类的重要性 2、常用方法 2、1 字符串构造 2、2 String对象的比较 2、3 字符串查找 2、4字符转换 数值和字符串转换: 大小写转化: 字符串转数组: 格式转化: 2、5 字符串替换 2、6字符串拆分 2、7 字符串…

知名品牌因商标痛失市场:114家直营店山寨店7000多家!

奶茶知名品牌“鹿角巷”当年红遍大江南北,是最早的新茶饮品牌,但是当年商标注册存在问题,被同行奶茶品牌抢占了先机,发声明“对大陆商标注册细则不详,在商标注册过程中让假店钻了法律空档”,最夸张的时候全…

python如何不保留小数

1、int() 向下取整(内置函数) n 3.75 print(int(n)) >>> 3 n 3.25 print(int(n)) >>> 3 2、round() 四舍五入(内置函数) n 3.75 print(round(n)) >>> 4 n 3.25 print(round(n)) >>> 3 …

JavaScript(5)——数据类型和类型检测

字符串类型String 通过单引号( )、双引号(" ")或反引号( )都叫字符串,单引号和双引号本质上没有区别,一般使用单引号。 注意: 无论单引号或是双引号必须成对使用单引号和…

人工智能系列-NumPy(二)

🌈个人主页:羽晨同学 💫个人格言:“成为自己未来的主人~” 链接数组 anp.array([[1,2],[3,4]]) print(第一个数组:) print(a) print(\n) bnp.array([[5,6],[7,8]]) print(第二个数组:) print(b) print(\n) print…

PHP智慧门店微信小程序系统源码

🔍【引领未来零售新风尚】🔍 🚀升级启航,智慧零售新篇章🚀 告别传统门店的束缚,智慧门店v3微信小程序携带着前沿科技与人性化设计,正式启航!这个版本不仅是对过往功能的全面优化&a…

【trition-server】运行一个pytorch的ngc镜像

ngc 提供了pytorch容器 号称是做了gpu加速的 我装的系统版本是3.8的python,但是pytorch似乎是用conda安装的3.5的: torch的python库是ls支持gpu加速是真的 英伟达的pytorch的说明书 root@a79bc3874b9d:/opt/pytorch# cat NVREADME.md PyTorch ======= PyTorch is a python …

【C++航海王:追寻罗杰的编程之路】关联式容器的底层结构——AVL树

目录 1 -> 底层结构 2 -> AVL树 2.1 -> AVL树的概念 2.2 -> AVL树节点的定义 2.3 -> AVL树的插入 2.4 -> AVL树的旋转 2.5 -> AVL树的验证 2.6 -> AVL树的性能 1 -> 底层结构 在上文中对对map/multimap/set/multiset进行了简单的介绍&…

C++基础21 二维数组及相关问题详解

这是《C算法宝典》C基础篇的第21节文章啦~ 如果你之前没有太多C基础,请点击👉C基础,如果你C语法基础已经炉火纯青,则可以进阶算法👉专栏:算法知识和数据结构👉专栏:数据结构啦 ​ 目…

短视频父亲:成都柏煜文化传媒有限公司

短视频父亲:镜头背后的温情与力量 在这个信息爆炸的时代,短视频以其短小精悍、直观生动的特点,迅速占据了人们碎片化的时间,成为情感交流与文化传播的重要平台。而在这些纷繁复杂的短视频中,有一类内容尤为触动人心—…

如何让自动化测试更加灵活简洁?

简化的架构对于自动化测试和主代码一样重要。冗余和不灵活性可能会导致一些问题:比如 UI 中的任何更改都需要更新多个文件,测试可能在功能上相互重复,并且支持新功能可能会变成一项耗时且有挑战性的工作来适应现有测试。 页面对象模式如何理…

ELK日志系统和Filebeat采集器的学习总结

ELK是ElasticSerach、Logstash、Kina Logstash负责采集数据,Logstash有三个插件,input、filter、output,filter插件作用是对采集的数据进行处理,过滤的,因此filter插件可以选,可以不用配置。 ElasticSear…

ASUS/华硕枪神5 G533Q G733Q系列 原厂win10系统 工厂文件 带F12 ASUS Recovery恢复

华硕工厂文件恢复系统 ,安装结束后带隐藏分区,一键恢复,以及机器所有驱动软件。 系统版本:Windows10 原厂系统下载网址:http://www.bioxt.cn 需准备一个20G以上u盘进行恢复 请注意:仅支持以上型号专用…

Facebook广告被拒:常见原因以及避免屏蔽的方法

大多数情况下,广告被屏蔽是因为违反了规则,这不仅仅是因为审核因素。有些规则并不明显,也没有在任何地方指定。例如,在广告中使用广告政策中未列出的停用词;审核算法确定照片描绘的模特过于暴露。下面小编将为你介绍Fa…

鸿蒙系统的开发与学习

1.开发工具的下载 DevEco Studio-HarmonyOS Next Beta版-华为开发者联盟 安装、环境配置时,建议 自定义目录 注意:路径中不要有 中文、特殊字符。 2.ArkTS基础总结 1)三种数据类型 ① string 字符串:描述信息 ② number 数…

【MySQL】mysql访问

mysql访问 1.引入MySQL 客户端库2.C/C 进行增删改3.查询的处理细节4.图形化界面访问数据库4.1下载MYSQL Workbench4.2MYSQL Workbench远程连接数据库 点赞👍👍收藏🌟🌟关注💖💖 你的支持是对我最大的鼓励&a…