昇思25天学习打卡营第7天|Pix2Pix实现图像转换

文章目录

      • 昇思MindSpore应用实践
        • 基于MindSpore的Pix2Pix图像转换
          • 1、Pix2Pix 概述
          • 2、U-Net架构
            • 定义UNet Skip Connection Block
          • 2、生成器部分
          • 3、基于PatchGAN的判别器
          • 4、Pix2Pix的生成器和判别器初始化
          • 5、模型训练
          • 6、模型推理
      • Reference

昇思MindSpore应用实践

本系列文章主要用于记录昇思25天学习打卡营的学习心得。

基于MindSpore的Pix2Pix图像转换
1、Pix2Pix 概述

Pix2Pix 是一个专门为图像到图像的转换任务设计的网络,可以实现语义/标签到真实图片、灰度图到彩色图、航空图到地图、白天到黑夜、线稿图到实物图的转换。Pix2Pix是将条件GAN(CGAN)应用于有监督(需要成对的输入素描图像Sketch和真实图像GT,来训练网络)的图像到图像翻译的经典之作,和所有的GANs一样,模型同样包括:生成器判别器两个部分。

CGAN:CGAN(条件GAN) 的目标是生成与给定条件匹配的数据样本。这些条件可以是标签、部分实例标注数据或任何其他形式的多模态辅助信息。CGAN 通过将条件并入网络的生成器和判别器中来指导数据生成过程。
在这里插入图片描述
相比普通的生成对抗损失:
L G A N ( G , D ) = E y [ l o g ( D ( y ) ) ] + E ( x , z ) [ l o g ( 1 − D ( x , z ) ) ] L_{GAN}(G,D)=\mathbb{E}_{y}[log(D(y))]+\mathbb{E}_{(x,z)}[log(1-D(x,z))] LGAN(G,D)=Ey[log(D(y))]+E(x,z)[log(1D(x,z))]

  • x x x:代表观测图像的数据。
  • z z z:代表随机噪声的数据。
  • y = G ( x , z ) y=G(x,z) y=G(x,z):生成器网络,给出由观测图像 x x x与随机噪声 z z z生成的“假”图片,其中 x x x来自于训练数据而非生成器。
  • D ( x , G ( x , z ) ) D(x,G(x,z)) D(x,G(x,z)):判别器网络,给出图像判定为真实图像的概率,其中 x x x来自于训练数据, G ( x , z ) G(x,z) G(x,z)来自于生成器。

CGAN多了来自于观测图像的条件 x x x(因此Pix2Pix训练时采用有监督的方式,需要标注好的语义数据,如下图中的
Map2Aerial数据集、Anime Sketch Colorization Pair 素描生成动漫数据集),
在这里插入图片描述
在这里插入图片描述

CGAN的目标可以表示为:

L C G A N ( G , D ) = E ( x , y ) [ l o g ( D ( x , y ) ) ] + E ( x , z ) [ l o g ( 1 − D ( x , G ( x , z ) ) ) ] L_{CGAN}(G,D)=\mathbb{E}_{(x,y)}[log(D(x,y))]+\mathbb{E}_{(x,z)}[log(1-D(x,G(x,z)))] LCGAN(G,D)=E(x,y)[log(D(x,y))]+E(x,z)[log(1D(x,G(x,z)))]

Pix2Pix 还包括 L1 损失,帮助生成器产生结构上接近真实图像的结果,这一点在图像翻译任务中尤为重要:
L L 1 ( G ) = E ( x , y , z ) [ ∣ ∣ y − G ( x , z ) ∣ ∣ 1 ] L_{L1}(G)=\mathbb{E}_{(x,y,z)}[||y-G(x,z)||_{1}] LL1(G)=E(x,y,z)[∣∣yG(x,z)1]

进而得到最终目标:

a r g min ⁡ G max ⁡ D L C G A N ( G , D ) + λ L L 1 ( G ) arg\min_{G}\max_{D}L_{CGAN}(G,D)+\lambda L_{L1}(G) argGminDmaxLCGAN(G,D)+λLL1(G)

图像转换问题本质上其实就是像素到像素的映射问题,Pix2Pix使用完全一样的网络结构和目标函数,仅更换不同的训练数据集就能分别实现以上的任务。

2、U-Net架构

U-Net架构:Pix2Pix 使用 U-Net 架构作为其生成器,在传统的编解码网络结构基础上加入了跳跃连接的方式,可以更好地捕捉图像的细节和上下文信息,适合于图像到图像的翻译任务。相比于普通的编解码结构(Encoder-Decoder),U-Net在编码器和解码器之间引入了跳跃连接,极大地改善了梯度流:
在这里插入图片描述

定义UNet Skip Connection Block
import mindspore
import mindspore.nn as nn
import mindspore.ops as ops

class UNetSkipConnectionBlock(nn.Cell):
    def __init__(self, outer_nc, inner_nc, in_planes=None, dropout=False,
                 submodule=None, outermost=False, innermost=False, alpha=0.2, norm_mode='batch'):
        super(UNetSkipConnectionBlock, self).__init__()
        down_norm = nn.BatchNorm2d(inner_nc)
        up_norm = nn.BatchNorm2d(outer_nc)
        use_bias = False
        if norm_mode == 'instance':
            down_norm = nn.BatchNorm2d(inner_nc, affine=False)
            up_norm = nn.BatchNorm2d(outer_nc, affine=False)
            use_bias = True
        if in_planes is None:
            in_planes = outer_nc
        down_conv = nn.Conv2d(in_planes, inner_nc, kernel_size=4,
                              stride=2, padding=1, has_bias=use_bias, pad_mode='pad')
        down_relu = nn.LeakyReLU(alpha)
        up_relu = nn.ReLU()
        if outermost:
            up_conv = nn.Conv2dTranspose(inner_nc * 2, outer_nc,
                                         kernel_size=4, stride=2,
                                         padding=1, pad_mode='pad')
            down = [down_conv]
            up = [up_relu, up_conv, nn.Tanh()]
            model = down + [submodule] + up
        elif innermost:
            up_conv = nn.Conv2dTranspose(inner_nc, outer_nc,
                                         kernel_size=4, stride=2,
                                         padding=1, has_bias=use_bias, pad_mode='pad')
            down = [down_relu, down_conv]
            up = [up_relu, up_conv, up_norm]
            model = down + up
        else:
            up_conv = nn.Conv2dTranspose(inner_nc * 2, outer_nc,
                                         kernel_size=4, stride=2,
                                         padding=1, has_bias=use_bias, pad_mode='pad')
            down = [down_relu, down_conv, down_norm]
            up = [up_relu, up_conv, up_norm]

            model = down + [submodule] + up
            if dropout:
                model.append(nn.Dropout(p=0.5))
        self.model = nn.SequentialCell(model)
        self.skip_connections = not outermost

    def construct(self, x):
        out = self.model(x)
        if self.skip_connections:
            out = ops.concat((out, x), axis=1)
        return out
2、生成器部分

原始CGAN的输入是条件x和噪声z两种信息,这里的生成器只使用了条件信息,因此不能生成多样性的结果。因此Pix2Pix在训练和测试时都使用了dropout,这样可以生成多样性的结果。

通过MindSpore实现基于U-Net的生成器:

class UNetGenerator(nn.Cell):
    def __init__(self, in_planes, out_planes, ngf=64, n_layers=8, norm_mode='bn', dropout=False):
        super(UNetGenerator, self).__init__()
        unet_block = UNetSkipConnectionBlock(ngf * 8, ngf * 8, in_planes=None, submodule=None,
                                             norm_mode=norm_mode, innermost=True)
        for _ in range(n_layers - 5):
            unet_block = UNetSkipConnectionBlock(ngf * 8, ngf * 8, in_planes=None, submodule=unet_block,
                                                 norm_mode=norm_mode, dropout=dropout)
        unet_block = UNetSkipConnectionBlock(ngf * 4, ngf * 8, in_planes=None, submodule=unet_block,
                                             norm_mode=norm_mode)
        unet_block = UNetSkipConnectionBlock(ngf * 2, ngf * 4, in_planes=None, submodule=unet_block,
                                             norm_mode=norm_mode)
        unet_block = UNetSkipConnectionBlock(ngf, ngf * 2, in_planes=None, submodule=unet_block,
                                             norm_mode=norm_mode)
        self.model = UNetSkipConnectionBlock(out_planes, ngf, in_planes=in_planes, submodule=unet_block,
                                             outermost=True, norm_mode=norm_mode)

    def construct(self, x):
        return self.model(x)
3、基于PatchGAN的判别器

判别器使用的PatchGAN结构,可看做卷积。
生成的矩阵中的每个点代表原图的一小块区域(patch)。通过矩阵中的各个值来判断原图中对应每个Patch的真假。

import mindspore.nn as nn

class ConvNormRelu(nn.Cell):
    def __init__(self,
                 in_planes,
                 out_planes,
                 kernel_size=4,
                 stride=2,
                 alpha=0.2,
                 norm_mode='batch',
                 pad_mode='CONSTANT',
                 use_relu=True,
                 padding=None):
        super(ConvNormRelu, self).__init__()
        norm = nn.BatchNorm2d(out_planes)
        if norm_mode == 'instance':
            norm = nn.BatchNorm2d(out_planes, affine=False)
        has_bias = (norm_mode == 'instance')
        if not padding:
            padding = (kernel_size - 1) // 2
        if pad_mode == 'CONSTANT':
            conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, pad_mode='pad',
                             has_bias=has_bias, padding=padding)
            layers = [conv, norm]
        else:
            paddings = ((0, 0), (0, 0), (padding, padding), (padding, padding))
            pad = nn.Pad(paddings=paddings, mode=pad_mode)
            conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, pad_mode='pad', has_bias=has_bias)
            layers = [pad, conv, norm]
        if use_relu:
            relu = nn.ReLU()
            if alpha > 0:
                relu = nn.LeakyReLU(alpha)
            layers.append(relu)
        self.features = nn.SequentialCell(layers)

    def construct(self, x):
        output = self.features(x)
        return output

class Discriminator(nn.Cell):
    def __init__(self, in_planes=3, ndf=64, n_layers=3, alpha=0.2, norm_mode='batch'):
        super(Discriminator, self).__init__()
        kernel_size = 4
        layers = [
            nn.Conv2d(in_planes, ndf, kernel_size, 2, pad_mode='pad', padding=1),
            nn.LeakyReLU(alpha)
        ]
        nf_mult = ndf
        for i in range(1, n_layers):
            nf_mult_prev = nf_mult
            nf_mult = min(2 ** i, 8) * ndf
            layers.append(ConvNormRelu(nf_mult_prev, nf_mult, kernel_size, 2, alpha, norm_mode, padding=1))
        nf_mult_prev = nf_mult
        nf_mult = min(2 ** n_layers, 8) * ndf
        layers.append(ConvNormRelu(nf_mult_prev, nf_mult, kernel_size, 1, alpha, norm_mode, padding=1))
        layers.append(nn.Conv2d(nf_mult, 1, kernel_size, 1, pad_mode='pad', padding=1))
        self.features = nn.SequentialCell(layers)

    def construct(self, x, y):
        x_y = ops.concat((x, y), axis=1)
        output = self.features(x_y)
        return output
4、Pix2Pix的生成器和判别器初始化

实例化Pix2Pix生成器和判别器:

import mindspore.nn as nn
from mindspore.common import initializer as init

g_in_planes = 3
g_out_planes = 3
g_ngf = 64
g_layers = 8
d_in_planes = 6
d_ndf = 64
d_layers = 3
alpha = 0.2
init_gain = 0.02
init_type = 'normal'


net_generator = UNetGenerator(in_planes=g_in_planes, out_planes=g_out_planes,
                              ngf=g_ngf, n_layers=g_layers)
for _, cell in net_generator.cells_and_names():
    if isinstance(cell, (nn.Conv2d, nn.Conv2dTranspose)):
        if init_type == 'normal':
            cell.weight.set_data(init.initializer(init.Normal(init_gain), cell.weight.shape))
        elif init_type == 'xavier':
            cell.weight.set_data(init.initializer(init.XavierUniform(init_gain), cell.weight.shape))
        elif init_type == 'constant':
            cell.weight.set_data(init.initializer(0.001, cell.weight.shape))
        else:
            raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
    elif isinstance(cell, nn.BatchNorm2d):
        cell.gamma.set_data(init.initializer('ones', cell.gamma.shape))
        cell.beta.set_data(init.initializer('zeros', cell.beta.shape))


net_discriminator = Discriminator(in_planes=d_in_planes, ndf=d_ndf,
                                  alpha=alpha, n_layers=d_layers)
for _, cell in net_discriminator.cells_and_names():
    if isinstance(cell, (nn.Conv2d, nn.Conv2dTranspose)):
        if init_type == 'normal':
            cell.weight.set_data(init.initializer(init.Normal(init_gain), cell.weight.shape))
        elif init_type == 'xavier':
            cell.weight.set_data(init.initializer(init.XavierUniform(init_gain), cell.weight.shape))
        elif init_type == 'constant':
            cell.weight.set_data(init.initializer(0.001, cell.weight.shape))
        else:
            raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
    elif isinstance(cell, nn.BatchNorm2d):
        cell.gamma.set_data(init.initializer('ones', cell.gamma.shape))
        cell.beta.set_data(init.initializer('zeros', cell.beta.shape))

class Pix2Pix(nn.Cell):
    """Pix2Pix模型网络"""
    def __init__(self, discriminator, generator):
        super(Pix2Pix, self).__init__(auto_prefix=True)
        self.net_discriminator = discriminator
        self.net_generator = generator

    def construct(self, reala):
        fakeb = self.net_generator(reala)
        return fakeb
5、模型训练

训练分为两个主要部分:训练判别器和训练生成器;
训练判别器的目的是最大程度地提高判别图像真伪的概率;
训练生成器是希望能产生更好的虚假图像;
在这两个部分中,分别获取训练过程中的损失,并在每个周期结束时进行统计。

通过MindSpore进行训练:

import numpy as np
import os
import datetime
from mindspore import value_and_grad, Tensor

epoch_num = 3
ckpt_dir = "results/ckpt"
dataset_size = 400
val_pic_size = 256
lr = 0.0002
n_epochs = 100
n_epochs_decay = 100

def get_lr():
    lrs = [lr] * dataset_size * n_epochs
    lr_epoch = 0
    for epoch in range(n_epochs_decay):
        lr_epoch = lr * (n_epochs_decay - epoch) / n_epochs_decay
        lrs += [lr_epoch] * dataset_size
    lrs += [lr_epoch] * dataset_size * (epoch_num - n_epochs_decay - n_epochs)
    return Tensor(np.array(lrs).astype(np.float32))

dataset = ds.MindDataset("./dataset/dataset_pix2pix/train.mindrecord", columns_list=["input_images", "target_images"], shuffle=True, num_parallel_workers=1)
steps_per_epoch = dataset.get_dataset_size()
loss_f = nn.BCEWithLogitsLoss()
l1_loss = nn.L1Loss()

def forword_dis(reala, realb):
    lambda_dis = 0.5
    fakeb = net_generator(reala)
    pred0 = net_discriminator(reala, fakeb)
    pred1 = net_discriminator(reala, realb)
    loss_d = loss_f(pred1, ops.ones_like(pred1)) + loss_f(pred0, ops.zeros_like(pred0))
    loss_dis = loss_d * lambda_dis
    return loss_dis

def forword_gan(reala, realb):
    lambda_gan = 0.5
    lambda_l1 = 100
    fakeb = net_generator(reala)
    pred0 = net_discriminator(reala, fakeb)
    loss_1 = loss_f(pred0, ops.ones_like(pred0))
    loss_2 = l1_loss(fakeb, realb)
    loss_gan = loss_1 * lambda_gan + loss_2 * lambda_l1
    return loss_gan

d_opt = nn.Adam(net_discriminator.trainable_params(), learning_rate=get_lr(),
                beta1=0.5, beta2=0.999, loss_scale=1)
g_opt = nn.Adam(net_generator.trainable_params(), learning_rate=get_lr(),
                beta1=0.5, beta2=0.999, loss_scale=1)

grad_d = value_and_grad(forword_dis, None, net_discriminator.trainable_params())
grad_g = value_and_grad(forword_gan, None, net_generator.trainable_params())

def train_step(reala, realb):
    loss_dis, d_grads = grad_d(reala, realb)
    loss_gan, g_grads = grad_g(reala, realb)
    d_opt(d_grads)
    g_opt(g_grads)
    return loss_dis, loss_gan

if not os.path.isdir(ckpt_dir):
    os.makedirs(ckpt_dir)

g_losses = []
d_losses = []
data_loader = dataset.create_dict_iterator(output_numpy=True, num_epochs=epoch_num)

for epoch in range(epoch_num):
    for i, data in enumerate(data_loader):
        start_time = datetime.datetime.now()
        input_image = Tensor(data["input_images"])
        target_image = Tensor(data["target_images"])
        dis_loss, gen_loss = train_step(input_image, target_image)
        end_time = datetime.datetime.now()
        delta = (end_time - start_time).microseconds
        if i % 2 == 0:
            print("ms per step:{:.2f}  epoch:{}/{}  step:{}/{}  Dloss:{:.4f}  Gloss:{:.4f} ".format((delta / 1000), (epoch + 1), (epoch_num), i, steps_per_epoch, float(dis_loss), float(gen_loss)))
        d_losses.append(dis_loss.asnumpy())
        g_losses.append(gen_loss.asnumpy())
    if (epoch + 1) == epoch_num:
        mindspore.save_checkpoint(net_generator, ckpt_dir + "Generator.ckpt")

在这里插入图片描述

6、模型推理

导入模型训练保存的权重:

from mindspore import load_checkpoint, load_param_into_net

param_g = load_checkpoint(ckpt_dir + "Generator.ckpt")
load_param_into_net(net_generator, param_g)
dataset = ds.MindDataset("./dataset/dataset_pix2pix/train.mindrecord", columns_list=["input_images", "target_images"], shuffle=True)
data_iter = next(dataset.create_dict_iterator())
predict_show = net_generator(data_iter["input_images"])
plt.figure(figsize=(10, 3), dpi=140)
for i in range(10):
    plt.subplot(2, 10, i + 1)
    plt.imshow((data_iter["input_images"][i].asnumpy().transpose(1, 2, 0) + 1) / 2)
    plt.axis("off")
    plt.subplots_adjust(wspace=0.05, hspace=0.02)
    plt.subplot(2, 10, i + 11)
    plt.imshow((predict_show[i].asnumpy().transpose(1, 2, 0) + 1) / 2)
    plt.axis("off")
    plt.subplots_adjust(wspace=0.05, hspace=0.02)
plt.show()

图像翻译效果如下:
在这里插入图片描述

Reference

昇思官方文档-Pix2Pix实现图像转换
昇思大模型平台
AI 助你无码看片,生成对抗网络(GAN)大显身手

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/768066.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

远程登录WINDOWS10,提示你的凭据不工作

1:想通过远程桌面登录WINDOWS10输入用户名和密码后,出现下面的提示。 2:登录WINDOWS10,在运行中输入gpedit.msc 3:本地组策略编辑器窗口中,依次展开,计算机配置 ---> 管理模版---> 系统--…

Python容器 之 字典--字典的遍历

字典存在 键(key), 值(value) , 遍历分为三种情况 1.遍历字典的键 循环拿到字典中的每个键名 # 方式一 for 变量 in 字典: print(变量) # 方式二 for 变量 in 字典.keys(): # 字典.keys() 可以获取字典所有的键 print(变量) my_dict {name: 小明, age: 18, sex: 男}…

CVE-2024-6387漏洞预警:尽快升级OpenSSH

OpenSSH维护者发布了安全更新,其中包含一个严重的安全漏洞,该漏洞可能导致在基于glibc的Linux系统中使用root权限执行未经身份验证的远程代码。该漏洞的代号为regreSSHion,CVE标识符为CVE-2024-6387。它驻留在OpenSSH服务器组件(也…

2.(vue3.x+vite)调用iframe的方法(vue编码)

1、效果预览 2.编写代码 (1)主页面 <template><div><button @click="sendMessage">调用iframe,并发送信息

什么是带有 API 网关的代理?

带有 API 网关的代理服务显著提升了用户体验和性能。特别是对于那些使用需要频繁创建和轮换代理的工具的用户来说&#xff0c;使用 API 可以节省大量时间并提高效率。 了解 API API&#xff0c;即应用程序编程接口&#xff0c;是服务提供商和用户之间的连接网关。通过 API 连接…

JDK1.8下载、安装与配置完整图文2024最新教程

一、报错 运行Pycharm时&#xff0c;报错No JVM installation found. Please install a JDK.If you already have a JDK installed, define a JAVA_HOME variable in Computer >System Properties > System Settings > Environment Variables. 首先可以检查是否已安装…

UiPath+Appium实现app自动化测试

一、环境准备工作 1.1 完成appium环境的搭建 参考&#xff1a;pythonappiumpytestallure模拟器(MuMu)自动化测试环境搭建_appium mumu模拟器-CSDN博客 1.2 完成uipath的安装 登录官网&#xff0c;完成注册与软件下载安装。 UiPath业务自动化平台&#xff1a;先进的RPA及自动…

昇思25天学习打卡营第十五天|基于MobileNetv2的垃圾分类

基于MobileNetv2的垃圾分类 MobileNetv2模型原理介绍 MobileNet网络是由Google团队于2017年提出的专注于移动端、嵌入式或IoT设备的轻量级CNN网络&#xff0c;相比于传统的卷积神经网络&#xff0c;MobileNet网络使用深度可分离卷积&#xff08;Depthwise Separable Convolut…

全网最全的TTS模型汇总,电商人、自媒体人狂喜

近日TTS语音模型在AI圈内热度不小&#xff0c;今天小编就来给大家做了个TTS模型汇总&#xff01; GPT-SoVITS&#xff08;AI 卖货主播大模型Streamer-Sales销冠用的TTS模型&#xff09; 模型简介&#xff1a;支持英语、日语和中文&#xff0c;零样本文本到语音&#xff08;TT…

搜索旋转数组

题目链接 搜索旋转数组 题目描述 注意点 数组已被旋转过很多次数组元素原先是按升序排列的若有多个相同元素&#xff0c;返回索引值最小的一个 解答思路 首先需要知道的是&#xff0c;本题数组中的旋转多次只是将头部的某些元素移动到尾部&#xff0c;所以不论怎么旋转&am…

ctfshow sql注入 web234--web241

web234 $sql "update ctfshow_user set pass {$password} where username {$username};";这里被过滤了&#xff0c;所以我们用\转义使得变为普通字符 $sql "update ctfshow_user set pass \ where username {$username};";那么这里的话 pass\ where…

If you already have a 64-bit JDK installed ,defined a JAVA_HOME...的错误

今天感觉idea有点卡&#xff0c;修改了一下内存&#xff0c;结果就报这个错误了&#xff0c;网上的解决方案好多&#xff0c;都不行 以下是解决方案 打开 C:\Program Files\JetBrains\IntelliJ IDEA 2024.1.4\bin\jetbrains_client64.exe 把jihuo这个目录下所有的文件都删掉&…

JVM原理(十一):JVM虚拟机六种必需对类进行初始化的情况

Java虚拟机把描述类的数据从Class文件加载到内存&#xff0c;并对数据进行校验、转换解析和初始化&#xff0c;最终形成可以被虚拟机直接使用的Java类型&#xff0c;这个过程被称作虚拟机的类加载机制。Java天生可以动态扩展的语言特性就是依赖运行期间动态加载和动态链接这个特…

2024年爬取BOSS直聘的操作

SCrapy框架实现对BOSS直聘的爬取 文章目录 SCrapy框架实现对BOSS直聘的爬取对SCrapy框架的一个简单认识Scrapy 组件的作用Scrapy 数据流 1. 测试反爬2. 定义一个下载中间件类,截取spiders的请求&#xff08;中间件直接截取请求&#xff0c;并且返回给Spider进行数据解析&#x…

动态住宅代理IP的优势是什么?什么地方用到?

在大数据时代的背景下&#xff0c;代理IP成为了很多企业顺利开展的重要工具。代理IP地址可以分为住宅代理IP地址和数据中心代理IP地址。选择住宅代理IP的好处是可以实现真正的高匿名性&#xff0c;而使用数据中心代理IP可能会暴露自己使用代理的情况。 住宅代理IP是指互联网服务…

Android存储权限梳理及api接口调用

Android存储权限梳理及api接口调用 背景 Android开发中需要了解android 存储权限管理和对应的api使用逻辑。 概述 Android系统的文件存储按存储介质类型分为内部存储和外部存储&#xff0c;按存储目录类型分为私有目录和公共目录&#xff1b;对于Android系统中的进程来说&a…

【力扣 - 每日一题】3099. 哈沙德数 | 模拟 (Go/C++)

题目内容 如果一个整数能够被其各个数位上的数字之和整除&#xff0c;则称之为 哈沙德数&#xff08;Harshad number&#xff09;。给你一个整数 x 。如果 x 是 哈沙德数 &#xff0c;则返回 x 各个数位上的数字之和&#xff0c;否则&#xff0c;返回 -1 。 示例 1&#xff1…

修改CentOS7 yum源

修改CentOS默认yum源为阿里镜像源 备份系统自带yum源配置文件 mv /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos.d/CentOS-Base.repo.backup 下载ailiyun的yum源配置文件 CentOS7 yum源如下&#xff1a; wget -O /etc/yum.repos.d/CentOS-Base.repo http://mirrors.aliyun…

按是否手工执行测试的角度划分:手工测试、自动化测试

1.手工测试&#xff08;Manual testing&#xff09; 手工测试是由人一个一个的输入用例&#xff0c;然后观察结果&#xff0c;和机器测试相对应&#xff0c;属于比较原始但是必须的一个步骤。 由专门的测试人员从用户视角来验证软件是否满足设计要求的行为。 更适用针对深度…

如何批量创建、提取和重命名文件夹!!!

你是否还在一个一个手动创建文件名&#xff01; 你是否还在一个一个手动提取文件名&#xff01; 你是否还在一个一个手动修改文件名&#xff01; 请随小生一起批量自动创建、提取、重命名&#xff01; 1、批量创建文件夹 【案例】创建1日-31日共31个文件夹 【第一步】在A列…