昇思MindSpore学习笔记2-04 LLM原理和实践--文本解码原理--以MindNLP为例

摘要:

介绍了昇思MindSpore AI框架采用贪心搜索、集束搜索计算高概率词生成文本的方法、步骤,并为解决重复等问题所作的多种尝试。

这一节完全看不懂,猜测是如何用一定范围的词造句。

一、概念

自回归语言模型

文本序列概率分布

分解为每个词基于其上文的条件概率的乘积

        

        W_0:初始上下文单词序列

        T: 时间步

        当生成EOS标签时,停止生成。

MindNLP/huggingface Transformers提供的文本生成方法

Greedy search

在每个时间步t输出概率最高的词

Wt=argmax_w P(w|w(l::t-l))

贪心搜索输出序列("The","nice","woman") 的条件概率为:0.5 * 0.4 = 0.2

缺点:容易错过后面的高概率词

如:dog=0.5, has=0.9 ![image.png](attachment:image.png =600x600)

二、环境配置

%%capture captured_output
# 实验环境已经预装了mindspore==2.2.14,如需更换mindspore版本,可更改下面mindspore的版本号
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14
!pip uninstall mindvision -y
!pip uninstall mindinsight -y

输出:

Found existing installation: mindvision 0.1.0
Uninstalling mindvision-0.1.0:
  Successfully uninstalled mindvision-0.1.0
WARNING: Skipping mindinsight as it is not installed.

# 该案例在 mindnlp 0.3.1 版本完成适配,如果发现案例跑不通,可以指定mindnlp版本,执行`!pip install mindnlp==0.3.1`
!pip install mindnlp

输出:

Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple
Requirement already satisfied: mindnlp in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (0.3.1)
Requirement already satisfied: mindspore in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp) (2.2.14)
Requirement already satisfied: tqdm in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp) (4.66.4)
Requirement already satisfied: requests in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp) (2.32.3)
Requirement already satisfied: datasets in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp) (2.20.0)
Requirement already satisfied: evaluate in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp) (0.4.2)
Requirement already satisfied: tokenizers in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp) (0.19.1)
Requirement already satisfied: safetensors in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp) (0.4.3)
Requirement already satisfied: sentencepiece in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp) (0.2.0)
Requirement already satisfied: regex in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp) (2024.5.15)
Requirement already satisfied: addict in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp) (2.4.0)
Requirement already satisfied: ml-dtypes in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp) (0.4.0)
Requirement already satisfied: pyctcdecode in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp) (0.5.0)
Requirement already satisfied: jieba in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp) (0.42.1)
Requirement already satisfied: pytest==7.2.0 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp) (7.2.0)
Requirement already satisfied: attrs>=19.2.0 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp) (23.2.0)
Requirement already satisfied: iniconfig in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp) (2.0.0)
Requirement already satisfied: packaging in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp) (23.2)
Requirement already satisfied: pluggy<2.0,>=0.12 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp) (1.5.0)
Requirement already satisfied: exceptiongroup>=1.0.0rc8 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp) (1.2.0)
Requirement already satisfied: tomli>=1.0.0 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp) (2.0.1)
Requirement already satisfied: filelock in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from datasets->mindnlp) (3.15.3)
Requirement already satisfied: numpy>=1.17 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from datasets->mindnlp) (1.26.4)
Requirement already satisfied: pyarrow>=15.0.0 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from datasets->mindnlp) (16.1.0)
Requirement already satisfied: pyarrow-hotfix in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from datasets->mindnlp) (0.6)
Requirement already satisfied: dill<0.3.9,>=0.3.0 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from datasets->mindnlp) (0.3.8)
Requirement already satisfied: pandas in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from datasets->mindnlp) (2.2.2)
Requirement already satisfied: xxhash in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from datasets->mindnlp) (3.4.1)
Requirement already satisfied: multiprocess in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from datasets->mindnlp) (0.70.16)
Requirement already satisfied: fsspec<=2024.5.0,>=2023.1.0 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from fsspec[http]<=2024.5.0,>=2023.1.0->datasets->mindnlp) (2024.5.0)
Requirement already satisfied: aiohttp in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from datasets->mindnlp) (3.9.5)
Requirement already satisfied: huggingface-hub>=0.21.2 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from datasets->mindnlp) (0.23.4)
Requirement already satisfied: pyyaml>=5.1 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from datasets->mindnlp) (6.0.1)
Requirement already satisfied: charset-normalizer<4,>=2 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from requests->mindnlp) (3.3.2)
Requirement already satisfied: idna<4,>=2.5 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from requests->mindnlp) (3.7)
Requirement already satisfied: urllib3<3,>=1.21.1 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from requests->mindnlp) (2.2.2)
Requirement already satisfied: certifi>=2017.4.17 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from requests->mindnlp) (2024.6.2)
Requirement already satisfied: protobuf>=3.13.0 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindspore->mindnlp) (5.27.1)
Requirement already satisfied: asttokens>=2.0.4 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindspore->mindnlp) (2.0.5)
Requirement already satisfied: pillow>=6.2.0 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindspore->mindnlp) (10.3.0)
Requirement already satisfied: scipy>=1.5.4 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindspore->mindnlp) (1.13.1)
Requirement already satisfied: psutil>=5.6.1 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindspore->mindnlp) (5.9.0)
Requirement already satisfied: astunparse>=1.6.3 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindspore->mindnlp) (1.6.3)
Requirement already satisfied: pygtrie<3.0,>=2.1 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from pyctcdecode->mindnlp) (2.5.0)
Requirement already satisfied: hypothesis<7,>=6.14 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from pyctcdecode->mindnlp) (6.104.2)
Requirement already satisfied: six in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from asttokens>=2.0.4->mindspore->mindnlp) (1.16.0)
Requirement already satisfied: wheel<1.0,>=0.23.0 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from astunparse>=1.6.3->mindspore->mindnlp) (0.43.0)
Requirement already satisfied: aiosignal>=1.1.2 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from aiohttp->datasets->mindnlp) (1.3.1)
Requirement already satisfied: frozenlist>=1.1.1 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from aiohttp->datasets->mindnlp) (1.4.1)
Requirement already satisfied: multidict<7.0,>=4.5 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from aiohttp->datasets->mindnlp) (6.0.5)
Requirement already satisfied: yarl<2.0,>=1.0 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from aiohttp->datasets->mindnlp) (1.9.4)
Requirement already satisfied: async-timeout<5.0,>=4.0 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from aiohttp->datasets->mindnlp) (4.0.3)
Requirement already satisfied: typing-extensions>=3.7.4.3 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from huggingface-hub>=0.21.2->datasets->mindnlp) (4.11.0)
Requirement already satisfied: sortedcontainers<3.0.0,>=2.1.0 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from hypothesis<7,>=6.14->pyctcdecode->mindnlp) (2.4.0)
Requirement already satisfied: python-dateutil>=2.8.2 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from pandas->datasets->mindnlp) (2.9.0.post0)
Requirement already satisfied: pytz>=2020.1 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from pandas->datasets->mindnlp) (2024.1)
Requirement already satisfied: tzdata>=2022.7 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from pandas->datasets->mindnlp) (2024.1)

[notice] A new release of pip is available: 24.1 -> 24.1.1
[notice] To update, run: python -m pip install --upgrade pip

三、贪心搜索Greedy search

#greedy_search
​
from mindnlp.transformers import GPT2Tokenizer, GPT2LMHeadModel
​
tokenizer = GPT2Tokenizer.from_pretrained("iiBcai/gpt2", mirror='modelscope')
​
# add the EOS token as PAD token to avoid warnings
model = GPT2LMHeadModel.from_pretrained("iiBcai/gpt2", pad_token_id=tokenizer.eos_token_id, mirror='modelscope')
​
# encode context the generation is conditioned on
input_ids = tokenizer.encode('I enjoy walking with my cute dog', return_tensors='ms')
​
# generate text until the output length (which includes the context length) reaches 50
greedy_output = model.generate(input_ids, max_length=50)
​
print("Output:\n" + 100 * '-')
print(tokenizer.decode(greedy_output[0], skip_special_tokens=True))

输出:

Building prefix dict from the default dictionary ...
Dumping model to file cache /tmp/jieba.cache
Loading model cost 1.006 seconds.
Prefix dict has been built successfully.
100%---------------------------------------- 26.0/26.0 [00:00<00:00, 1.63kB/s]
100%---------------------------------------- 0.99M/0.99M [00:00<00:00, 18.9MB/s]
100%---------------------------------------- 446k/446k [00:00<00:00, 7.49MB/s]
100%---------------------------------------- 1.29M/1.29M [00:00<00:00, 18.0MB/s]
100%---------------------------------------- 665/665 [00:00<00:00, 49.7kB/s]
100%---------------------------------------- 523M/523M [00:42<00:00, 17.2MB/s]Output:
-------------------------------------------------------------------------------------------------
I enjoy walking with my cute dog, but I'm not sure if I'll ever be able to walk with my dog. I'm not sure if I'll ever be able to walk with my dog.

I'm not sure if I'll

四、集束搜索Beam search

每个时间步保留最可能的 num_beams 个词选择概率最高的序列。

如图以 num_beams=2 为例:

("The","dog" ,"has"  ) : 0.4 * 0.9 = 0.36

("The","nice","woman") : 0.5 * 0.4 = 0.20

优点:一定程度保留最优路径

缺点:

        1. 无法解决重复问题;

        2. 开放域生成效果差

from mindnlp.transformers import GPT2Tokenizer, GPT2LMHeadModel
​
tokenizer = GPT2Tokenizer.from_pretrained("iiBcai/gpt2", mirror='modelscope')
​
# add the EOS token as PAD token to avoid warnings
model = GPT2LMHeadModel.from_pretrained("iiBcai/gpt2", pad_token_id=tokenizer.eos_token_id, mirror='modelscope')
​
# encode context the generation is conditioned on
input_ids = tokenizer.encode('I enjoy walking with my cute dog', return_tensors='ms')
​
# activate beam search and early_stopping
beam_output = model.generate(
    input_ids, 
    max_length=50, 
    num_beams=5, 
    early_stopping=True
)
​
print("Output:\n" + 100 * '-')
print(tokenizer.decode(beam_output[0], skip_special_tokens=True))
print(100 * '-')
​
# set no_repeat_ngram_size to 2
beam_output = model.generate(
    input_ids, 
    max_length=50, 
    num_beams=5, 
    no_repeat_ngram_size=2, 
    early_stopping=True
)
​
print("Beam search with ngram, Output:\n" + 100 * '-')
print(tokenizer.decode(beam_output[0], skip_special_tokens=True))
print(100 * '-')
​
# set return_num_sequences > 1
beam_outputs = model.generate(
    input_ids, 
    max_length=50, 
    num_beams=5, 
    no_repeat_ngram_size=2, 
    num_return_sequences=5, 
    early_stopping=True
)
​
# now we have 3 output sequences
print("return_num_sequences, Output:\n" + 100 * '-')
for i, beam_output in enumerate(beam_outputs):
    print("{}: {}".format(i, tokenizer.decode(beam_output, skip_special_tokens=True)))
print(100 * '-')

输出:

-------------------------------------------------------------------------------------------------I enjoy walking with my cute dog, but I don't think I'll ever be able to walk with her again."

"I don't think I'll ever be able to walk with her again."

"I don't think I
-------------------------------------------------------------------------------------------------
Beam search with ngram, Output:
-------------------------------------------------------------------------------------------------
I enjoy walking with my cute dog, but I don't think I'll ever be able to walk with her again."

"I'm not sure what to say to that," she said. "I mean, it's not like I'm
-------------------------------------------------------------------------------------------------
return_num_sequences, Output:
-------------------------------------------------------------------------------------------------
0: I enjoy walking with my cute dog, but I don't think I'll ever be able to walk with her again."

"I'm not sure what to say to that," she said. "I mean, it's not like I'm
1: I enjoy walking with my cute dog, but I don't think I'll ever be able to walk with her again."

"I'm not sure what to say to that," she said. "I mean, it's not like she's
2: I enjoy walking with my cute dog, but I don't think I'll ever be able to walk with her again."

"I'm not sure what to say to that," she said. "I mean, it's not like we're
3: I enjoy walking with my cute dog, but I don't think I'll ever be able to walk with her again."

"I'm not sure what to say to that," she said. "I mean, it's not like I've
4: I enjoy walking with my cute dog, but I don't think I'll ever be able to walk with her again."

"I'm not sure what to say to that," she said. "I mean, it's not like I can
-------------------------------------------------------------------------------------------------

五、集束搜索的问题

 

重复问题 

n-gram 惩罚:

候选词再现概率设置为 0

设置no_repeat_ngram_size=2 ,任意 2-gram 不会出现两次

Notice: 实际文本生成需要重复出现

Sample

根据当前条件概率分布随机选择输出词 

("car") ~P(w∣"The")("drives") ~P(w∣"The","car")

优点:文本生成多样性高

缺点:生成文本不连续

import mindspore
from mindnlp.transformers import GPT2Tokenizer, GPT2LMHeadModel
​
tokenizer = GPT2Tokenizer.from_pretrained("iiBcai/gpt2", mirror='modelscope')
​
# add the EOS token as PAD token to avoid warnings
model = GPT2LMHeadModel.from_pretrained("iiBcai/gpt2", pad_token_id=tokenizer.eos_token_id, mirror='modelscope')
​
# encode context the generation is conditioned on
input_ids = tokenizer.encode('I enjoy walking with my cute dog', return_tensors='ms')
​
mindspore.set_seed(0)
# activate sampling and deactivate top_k by setting top_k sampling to 0
sample_output = model.generate(
    input_ids, 
    do_sample=True, 
    max_length=50, 
    top_k=0
)
​
print("Output:\n" + 100 * '-')
print(tokenizer.decode(sample_output[0], skip_special_tokens=True))

输出:

-------------------------------------------------------------------------------------------------
I enjoy walking with my cute dog Neddy as much as I'd like. Keep up the good work Neddy!"

I realized what Neddy meant when he first launched the website. "Thank you so much for joining."

I

Temperature 

降低softmax 的temperature使 P(w∣w1:t−1​)分布更陡峭

增加高概率单词的似然

降低低概率单词的似然

import mindspore
from mindnlp.transformers import GPT2Tokenizer, GPT2LMHeadModel
​
tokenizer = GPT2Tokenizer.from_pretrained("iiBcai/gpt2", mirror='modelscope')
​
# add the EOS token as PAD token to avoid warnings
model = GPT2LMHeadModel.from_pretrained("iiBcai/gpt2", pad_token_id=tokenizer.eos_token_id, mirror='modelscope')
​
# encode context the generation is conditioned on
input_ids = tokenizer.encode('I enjoy walking with my cute dog', return_tensors='ms')
​
mindspore.set_seed(1234)
# activate sampling and deactivate top_k by setting top_k sampling to 0
sample_output = model.generate(
    input_ids, 
    do_sample=True, 
    max_length=50, 
    top_k=0,
    temperature=0.7
)
​
print("Output:\n" + 100 * '-')
print(tokenizer.decode(sample_output[0], skip_special_tokens=True))

输出:

-------------------------------------------------------------------------------------------------
I enjoy walking with my cute dog and have never had a problem with her until now.

A large dog named Chucky managed to get a few long stretches of grass on her back and ran around with it for about 5 minutes, ran around

TopK sample

选出概率最大的 K 个词,重新归一化,最后在归一化后的 K 个词中采样

将采样池限制为固定大小 K :

  • 在分布比较尖锐的时候产生胡言乱语
  • 在分布比较平坦的时候限制模型的创造力
import mindspore
from mindnlp.transformers import GPT2Tokenizer, GPT2LMHeadModel
​
tokenizer = GPT2Tokenizer.from_pretrained("iiBcai/gpt2", mirror='modelscope')
​
# add the EOS token as PAD token to avoid warnings
model = GPT2LMHeadModel.from_pretrained("iiBcai/gpt2", pad_token_id=tokenizer.eos_token_id, mirror='modelscope')
​
# encode context the generation is conditioned on
input_ids = tokenizer.encode('I enjoy walking with my cute dog', return_tensors='ms')
​
mindspore.set_seed(0)
# activate sampling and deactivate top_k by setting top_k sampling to 0
sample_output = model.generate(
    input_ids, 
    do_sample=True, 
    max_length=50, 
    top_k=50
)
​
print("Output:\n" + 100 * '-')
print(tokenizer.decode(sample_output[0], skip_special_tokens=True))

输出:

-------------------------------------------------------------------------------------------------
I enjoy walking with my cute dog.

She's always up for some action, so I have seen her do some stuff with it.

Then there's the two of us.

The two of us I'm talking about were

Top-P sample

在累积概率超过概率 p 的最小单词集中进行采样,重新归一化

采样池可以根据下一个词的概率分布动态增加和减少

import mindspore
from mindnlp.transformers import GPT2Tokenizer, GPT2LMHeadModel
​
tokenizer = GPT2Tokenizer.from_pretrained("iiBcai/gpt2", mirror='modelscope')
​
# add the EOS token as PAD token to avoid warnings
model = GPT2LMHeadModel.from_pretrained("iiBcai/gpt2", pad_token_id=tokenizer.eos_token_id, mirror='modelscope')
​
# encode context the generation is conditioned on
input_ids = tokenizer.encode('I enjoy walking with my cute dog', return_tensors='ms')
​
mindspore.set_seed(0)
​
# deactivate top_k sampling and sample only from 92% most likely words
sample_output = model.generate(
    input_ids, 
    do_sample=True, 
    max_length=50, 
    top_p=0.92, 
    top_k=0
)
​
print("Output:\n" + 100 * '-')
print(tokenizer.decode(sample_output[0], skip_special_tokens=True))

输出:

-------------------------------------------------------------------------------------------------
I enjoy walking with my cute dog Neddy as much as I'd like. Keep up the good work Neddy!"

I realized what Neddy meant when he first launched the website. "Thank you so much for joining."

I

top_k_top_p

import mindspore
from mindnlp.transformers import GPT2Tokenizer, GPT2LMHeadModel
​
tokenizer = GPT2Tokenizer.from_pretrained("iiBcai/gpt2", mirror='modelscope')
​
# add the EOS token as PAD token to avoid warnings
model = GPT2LMHeadModel.from_pretrained("iiBcai/gpt2", pad_token_id=tokenizer.eos_token_id, mirror='modelscope')
​
# encode context the generation is conditioned on
input_ids = tokenizer.encode('I enjoy walking with my cute dog', return_tensors='ms')
​
mindspore.set_seed(0)
# set top_k = 50 and set top_p = 0.95 and num_return_sequences = 3
sample_outputs = model.generate(
    input_ids,
    do_sample=True,
    max_length=50,
    top_k=5,
    top_p=0.95,
    num_return_sequences=3
)
​
print("Output:\n" + 100 * '-')
for i, sample_output in enumerate(sample_outputs):
  print("{}: {}".format(i, tokenizer.decode(sample_output, skip_special_tokens=True)))

输出:

-------------------------------------------------------------------------------------------------
0: I enjoy walking with my cute dog.

"My dog loves the smell of the dog. I'm so happy that she's happy with me.

"I love to walk with my dog. I'm so happy that she's happy
1: I enjoy walking with my cute dog. I'm a big fan of my cat and her dog, but I don't have the same enthusiasm for her. It's hard not to like her because it is my dog.

My husband, who
2: I enjoy walking with my cute dog, but I'm also not sure I would want my dog to walk alone with me."

She also told The Daily Beast that the dog is very protective.

"I think she's very protective of

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/766095.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

76. UE5 RPG 实现场景阻挡剔除功能

在俯视角游戏中&#xff0c;我们总会碰到一个问题就是&#xff0c;建筑会遮挡住角色的问题。遇到这种问题有多种解决方案&#xff0c;厂商经常使用的一种方案是&#xff0c;如果角色被遮挡&#xff0c;则使用一种纯色或者增加一些菲涅尔的效果来实现 这种效果我之前在unity内实…

SpringBoot 项目整合 MyBatis 框架,附带测试示例

文章目录 一、创建 SpringBoot 项目二、添加 MyBatis 依赖三、项目结构和数据库表结构四、项目代码1、application.yml2、TestController3、TbUser4、TbUserMapper5、TestServiceImpl6、TestService7、TestApplication8、TbUserMapper.xml9、MyBatisTest 五、浏览器测试结果六、…

一文了解什么是车载Tbox

目录 前言一、Tbox是什么呢?二、Tbox架构三、App——TSP——Tbox交互时序图四、汽车混合网关拓扑结构示例五、Tbox功能 前言 强烈建议提前阅读一下这篇文章&#xff1a;车机Tbox介绍 一、Tbox是什么呢? Tbox是汽车上的一个盒子&#xff0c;指的是Telematics BOX&#xff0c…

Michael.W基于Foundry精读Openzeppelin第61期——ERC1967Upgrade.sol

Michael.W基于Foundry精读Openzeppelin第61期——ERC1967Upgrade.sol 0. 版本0.1 ERC1967Upgrade.sol 1. 目标合约2. 代码精读2.1 _getImplementation() internal && _upgradeTo(address newImplementation) internal2.2 _upgradeToAndCall(address newImplementation,…

常见反爬及应对

一&#xff0c;特殊混淆的还原 1.1 还原 AAEncode 与 JJEncode AAEncode是一种JavaScript代码混淆算法&#xff0c;利用它&#xff0c;可以将代码转换成 颜文字 表示的JavaScript代码。 去掉代码最后的 (‘‘)&#xff0c;这是函数的自调用&#xff0c;去除后就是函数的声明…

【计算机网络仿真】b站湖科大教书匠思科Packet Tracer——实验13 静态路由配置错误导致的路由环路问题

一、实验目的 1.验证静态路由配置错误导致的路由环路问题&#xff1b; 二、实验要求 1.使用Cisco Packet Tracer仿真平台&#xff1b; 2.观看B站湖科大教书匠仿真实验视频&#xff0c;完成对应实验。 三、实验内容 1.构建网络拓扑&#xff1b; 2.验证路由环路。 四、实验…

探囊取物之多形式登录页面(基于BootStrap4)

基于BootStrap4的登录页面&#xff0c;支持手机验证码登录、账号密码登录、二维码登录、其它统一登录 低配置云服务器&#xff0c;首次加载速度较慢&#xff0c;请耐心等候&#xff1b;演练页面可点击查看源码 预览页面&#xff1a;http://www.daelui.com/#/tigerlair/saas/pr…

【AI提升】如何使用大模型:本机离线和FastAPI服务调用

大模型本身提供的功能&#xff0c;类似于windows中的一个exe小工具&#xff0c;我们可以本机离线调用然后完成具体的功能&#xff0c;但是别的机器需要访问这个exe是不可行的。常见的做法就是用web容器封装起来&#xff0c;提供一个http接口&#xff0c;然后接口在后端调用这个…

electron教程(二)控制应用程序的事件生命周期

1.will-finish-launching 当应用程序完成基础的启动的时候被触发&#xff0c;在 Windows 和 Linux 中, will-finish-launching 事件与 ready 事件是相同的; 在 macOS 中&#xff0c;这个事件相当于 NSApplication 中的 applicationWillFinishLaunching 提示。 app.on(will-fi…

Andrej Karpathy提出未来计算机2.0构想: 完全由神经网络驱动!网友炸锅了

昨天凌晨&#xff0c;知名人工智能专家、OpenAI的联合创始人Andrej Karpathy提出了一个革命性的未来计算机的构想&#xff1a;完全由神经网络驱动的计算机&#xff0c;不再依赖传统的软件代码。 嗯&#xff0c;这是什么意思&#xff1f;全部原生LLM硬件设备的意思吗&#xff1f…

机械设备制造企业MES系统解决方案介绍

机械设备制造行业涵盖了各类工业设备、工程机械、农业机械等多个领域&#xff0c;对生产精度、质量控制和效率提出了较高要求。为了提升生产效率、保证产品质量并满足客户需求&#xff0c;越来越多的机械设备制造企业引入了MES系统。本文将详细介绍MES系统在机械设备制造行业的…

魔镜魔镜,我要变得更漂亮!按需搭配一键叠穿,效果拿下新SOTA!中山大学字节智创数字人团队提出虚拟试穿新框架

魔镜魔镜,我要变得更漂亮!按需搭配一键叠穿,效果拿下新SOTA!中山大学&字节智创数字人团队提出虚拟试穿新框架。 多件衣服按指定穿法一键虚拟试穿! 中山大学&字节智创数字人团队提出了一个名为MMTryon的虚拟试穿框架,可以通过输入多个服装图像及指定穿法的文本指…

COB封装的LED显示屏是什么?

COB&#xff08;Chip on Board&#xff09;封装的LED显示屏&#xff0c;是一种采用先进倒装COB封装技术的显示屏&#xff0c;其中LED芯片是直接被安装并封装在PCB电路板上&#xff0c;而不是先对单个封装再焊接至电路板&#xff0c;与SMD&#xff08;Surface Mount Device&…

怎么快速给他人分享图片?扫描二维码看图的简单做法

现在通过二维码来查看图片是一种很常见的方法&#xff0c;通过二维码来查看图片不仅能够减少对手机存储空间的占用&#xff0c;而且获取图片变得更加方便快捷&#xff0c;只需要扫码就能够查看图片&#xff0c;有利于图片的展现。很多的场景中都有图片二维码的应用&#xff0c;…

2024软件设计师经验贴(一考就过)

2024软件设计师经验贴&#xff08;一考就过&#xff09; 第一阶段、基础积累&#xff1a;把书读厚 这一阶段可以跟着视频、书籍或文章进行基础知识的学习。 推荐的视频系列&#xff1a; 「软件设计师」 上午题 #1 计算机系统_哔哩哔哩_bilibili 40–14.3设计模式 推荐的文…

下载和使用SLUN数据集

1. 下载数据集 网址在https://opendatalab.com/OpenDataLab/lsun/tree/main/raw/scenes 下载bedroom_val_lmdb.zip 然后解压后会又两个文件&#xff0c;一个data.mdb&#xff0c;另一个lock.mdb。 2. 使用torchvison使用LSUN数据集 我把解压后的bedroom_val_lmdb放在/home/…

3.js - 深度测试、深度写入、深度函数

md&#xff0c;艹&#xff0c;这玩意得理解&#xff0c;只看代码不管事 效果图 代码 // ts-nocheck// 引入three.js import * as THREE from three// 导入轨道控制器 import { OrbitControls } from three/examples/jsm/controls/OrbitControls// 导入lil.gui import { GUI } …

山东访老友 | 同成建材数字化转型两年前后的巨大变化

山东省济宁市同成建材有限公司&#xff08;简称“同成建材”&#xff09;成立于2013年&#xff0c;目前共建有混凝土生产线2条、砂浆生产线1条&#xff0c;是济宁市最早建成的预拌混凝土搅拌站之一。 2020年&#xff0c;同成建材产量增长&#xff0c;市场环境变化&#xff0c;…

Redis的使用(二)redis的命令总结

1.概述 这一小节&#xff0c;我们主要来研究一下redis的五大类型的基本使用&#xff0c;数据类型如下&#xff1a; redis我们接下来看一看这八种类型的基本使用。我们可以在redis的官网查询这些命令:Commands | Docs,同时我们也可以用help 数据类型查看命令的帮助文档。 2. 常…

【漏洞复现】D-Link NAS 未授权RCE漏洞(CVE-2024-3273)

0x01 产品简介 D-Link 网络存储 (NAS)是中国友讯&#xff08;D-link&#xff09;公司的一款统一服务路由器。 0x02 漏洞概述 D-Link NAS nas_sharing.cgi接口存在命令执行漏洞&#xff0c;该漏洞存在于“/cgi-bin/nas_sharing.cgi”脚本中&#xff0c;影响其 HTTP GET 请求处…