K近邻算法实现红酒聚类
使用MindSpore在部分wine数据集上进行KNN实验
- 了解KNN的基本概念;
- 了解如何使用MindSpore进行KNN实验。
-
2、K近邻算法原理介绍
K近邻算法(K-Nearest-Neighbor, KNN)是一种用于分类和回归的非参数统计方法,最初由 Cover和Hart于1968年提出(Cover等人,1967),是机器学习最基础的算法之一。它正是基于以上思想:要确定一个样本的类别,可以计算它与所有训练样本的距离,然后找出和该样本最接近的k个样本,统计出这些样本的类别并进行投票,票数最多的那个类就是分类的结果。KNN的三个基本要素:
-
K值,一个样本的分类是由K个邻居的“多数表决”确定的。K值越小,容易受噪声影响,反之,会使类别之间的界限变得模糊。
-
距离度量,反映了特征空间中两个样本间的相似度,距离越小,越相似。常用的有Lp距离(p=2时,即为欧式距离)、曼哈顿距离、海明距离等。
-
分类决策规则,通常是多数表决,或者基于距离加权的多数表决(权值与距离成反比)。
-
2.1 分类问题
预测算法(分类)的流程如下:
(1)在训练样本集中找出距离待测样本x_test最近的k个样本,并保存至集合N中;
(2)统计集合N中每一类样本的个数𝐶𝑖,𝑖=1,2,3,...,𝑐𝐶𝑖,𝑖=1,2,3,...,𝑐;
(3)最终的分类结果为argmax𝐶𝑖𝐶𝑖 (最大的对应的𝐶𝑖𝐶𝑖)那个类。
在上述实现过程中,k的取值尤为重要。它可以根据问题和数据特点来确定。在具体实现时,可以考虑样本的权重,即每个样本有不同的投票权重,这种方法称为带权重的k近邻算法,它是一种变种的k近邻算法。
-
2.2 回归问题
假设离测试样本最近的k个训练样本的标签值为𝑦𝑖𝑦𝑖,则对样本的回归预测输出值为:
-
即为所有邻居的标签均值。
带样本权重的回归预测函数为:
-
其中𝑤𝑖𝑤𝑖为第个𝑖𝑖样本的权重。
-
2.3 距离的定义
KNN算法的实现依赖于样本之间的距离,其中最常用的距离函数就是欧氏距离(欧几里得距离)。ℝ𝑛𝑅𝑛空间中的两点𝑥𝑥和𝑦𝑦,它们之间的欧氏距离定义为:
-
需要特别注意的是,使用欧氏距离时,应将特征向量的每个分量归一化,以减少因为特征值的尺度范围不同所带来的干扰,否则数值小的特征分量会被数值大的特征分量淹没。
其它的距离计算方式还有Mahalanobis距离、Bhattacharyya距离等。