mac安装达梦数据库

参考:mac安装达梦数据库​​​​​​

实践如下:

1、下载达梦Docker镜像文件

同参考链接

2、导入镜像

镜像可以随便放在某个目录,相当于安装包,导入后就没有作用了。

 查找达梦镜像名称:dm8_20240613_rev229704_x86_rh6_64,后面会用到!!

3、启动容器

由于我在Docker尝试增加配置路径一直不成功,所以放弃了这个opt路径

在运行创建容器命令时:

  • 将路径opt全量替换成了tmp;
  • 将镜像名称替换成第二步的名称;

执行命令,建立名为 dm8_test 的数据库

docker run -d -p 5236:5236 --restart=always --name dm8_test --privileged=true -e PAGE_SIZE=16 -e LD_LIBRARY_PATH=/tmp/dm8/dmdbms/bin -e EXTENT_SIZE=32 -e BLANK_PAD_MODE=1 -e LOG_SIZE=1024 -e UNICODE_FLAG=1 -e LENGTH_IN_CHAR=1 -e INSTANCE_NAME=dm8_test -v /tmp/dm8/dm8_test:/tmp/dm8/dmdbms/data dm8:dm8_20240613_rev229704_x86_rh6_64

查看容器是否新建: 

4、DataGrip连接

4.1.1 驱动下载

同参考链接【4.1.2.无默认驱动】,下载后配置如下:

4.1.2 客户端连接

Docker镜像的默认账号密码:

用户名:SYSDBA

密码:SYSDBA001

5、测试 

select * from  v$version;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/763361.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

第11章 规划过程组(11.6规划进度管理)

第11章 规划过程组(二)11.6规划进度管理,在第三版教材第385页;#软考中级##中级系统集成项目管理师# 文字图片音频方式 第一个知识点:主要输出 1、进度管理计划 准确度 定义活动持续时间估算的可接受区间&#xff0…

Pycharm常用快捷键整理

1,格式化代码 【ctrlAltL】 写代码的时候会发现有很多黄色的波浪号,这个时候可以点击任意黄色波浪号的代码,然后按下【Ctrl Alt L】进行代码格式化 2,快速往返 ctrll Alt ⬅ ,表示查看上一步调用函数位置&#xff0…

Oracle 视图、存储过程、函数、序列、索引、同义词、触发器

优质博文:IT-BLOG-CN 一、视图 从表中抽出的逻辑上相关的数据集合,视图是一种虚表,视图是建立在已有表的基础之上,视图赖以建立的这些表称为基表。向视图提供数据的是 SELECT语句,可以将视图理解为存储起来的SELECT语…

KV260视觉AI套件--PYNQ-DPU-Resnet50

目录 1. 简介 2. 代码解析 3. 全部代码展示 4. 总结 1. 简介 Resnet50 一种深度卷积神经网络(CNN),它由50层构成。这种网络特别设计用于图像识别任务,并且在2015年的ImageNet大规模视觉识别挑战赛(ILSVRC&#x…

notepad++安装并打开json文件

1、notepad安装 1、首先下载Notepad.exe 2、选择简体中文安装 点击下一步 点击“我接受” 选择安装目录,进行下一步安装 默认下一步 选择安装 等待安装完成 点击完成 2、保存json文件 复制返回结果 先把返回结果复制出来。保存到text里面 把文件另存为json格式 3、…

Mac搭建anaconda环境并安装深度学习库

1. 下载anaconda安装包 根据自己的操作系统不同,选择不同的安装包Anaconda3-2024.06-1-MacOSX-x86_64.pkg,我用的还是旧的intel所以下载这个,https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/,如果mac用的是M1&#xff0…

通过百度文心智能体创建STM32编程助手-实操

一、前言 文心智能体平台AgentBuilder 是百度推出的基于文心大模型的智能体(Agent)平台,支持广大开发者根据自身行业领域、应用场景,选取不同类型的开发方式,打造大模型时代的产品能力。开发者可以通过 prompt 编排的…

拍摄的vlog视频画质模糊怎么办?视频画质高清修复

在短视频逐渐成为主流的今天,许多朋友都会通过vlog的形式记录下自己的生活。但我们会发现,自己拍摄的视频与专业博主拍摄的视频,在画质上就会有所差别,拍摄的vlog视频画质模糊不清晰怎么办? 拍摄的vlog视频画质模糊怎么…

昇思第6天

函数式自动微分 神经网络的训练主要使用反向传播算法,模型预测值(logits)与正确标签(label)送入损失函数(loss function)获得loss,然后进行反向传播计算,求得梯度&#…

推荐算法学习笔记2.2:基于深度学习的推荐算法-基于特征交叉组合+逻辑回归思路的深度推荐算法-Deep Crossing模型

Deep Crossing模型(微软,搜索引擎,广告推荐) 前置知识:推荐算法学习笔记1.3:传统推荐算法-逻辑回归算法,推荐算法学习笔记1.4:传统推荐算法-自动特征的交叉解决方案:FM→FFM 本文含残差块反向传…

人工智能--目标检测

欢迎来到 Papicatch的博客 文章目录 🍉引言 🍉概述 🍈目标检测的主要流程通常包括以下几个步骤 🍍数据采集 🍍数据预处理 🍍特征提取 🍍目标定位 🍍目标分类 🍈…

mac软件卸载后的残留文件删除 mac如何卸载应用程序

很多人都不知道,mac使用系统方式卸载后会有残留文件未被删除,久而久之就会占用大量的磁盘空间。今天小编就来教大家如何删除mac软件卸载后的残留文件,如果你想不留痕迹的删除,mac又该如何正确卸载应用程序,本文将一一为…

整合、速通 版本控制器-->Git 的实际应用

目录 版本控制器 -- Git1、Git 和 SVN 的区别2、Git 的卸载和安装2-1:Git 卸载1、先查下原本的Git版本2、删除环境变量3、控制面板卸载 Git 2-2:Git 下载安装1、官网下载2、详细安装步骤3、安装成功展示 3、Git 基础知识3-1:基本的 Linux 命令…

通俗易懂的chatgpg的原理简介

目录 一、深度学习与语言模型 二、ChatGPT训练三步走 三、情景学习与思维链 四、修改提示语优化结果 五、能力评估和注意问题 六.算法原理 简介: ChatGPT的人工智能原理主要基于深度学习技术,特别是大规模的预训练语言模型和Transformer结构。Cha…

SpringCloud_Eureka注册中心

概述 Eureka是SpringCloud的注册中心。 是一款基于REST的服务治理框架,用于实现微服务架构中的服务发现和负载均衡。 在Eureka体系中,有两种角色: 服务提供者和服务消费者。 服务提供者将自己注册到Eureka服务器,服务消费者从Eureka服务器中…

使用Qt制作一个简单的界面

1、创建工程 步骤一: 步骤二: 步骤三: 选择 build system,有qmake、CMake 和 Qbs 三个选项。 CMake 很常用,功能也很强大,许多知名的项目都是用它,比如 OpenCV 和 VTK,但它的语法繁…

【Android面试八股文】什么是ANR?如何分析和定位ANR?如何避免ANR?

文章目录 一、ANR概述二、触发ANR的主要场景三、Android四大组件中的潜在的ANR风险五、避免ANR的实践建议六、ANR的产生原因与出现的场景6.1 原因:6.2 出现场景:七、ANR的定位与分析7.1. ANR分析思路——traces7.2 ANR其他分析思路与相关日志7.2.1 分析logcat思路7.2.2 分析k…

Spring Cloud Circuit Breaker基础入门与服务熔断

官网地址&#xff1a;https://spring.io/projects/spring-cloud-circuitbreaker#overview 本文SpringCloud版本为&#xff1a; <spring.boot.version>3.1.7</spring.boot.version> <spring.cloud.version>2022.0.4</spring.cloud.version>【1】Circu…

易校网校园综合跑腿小程序源码修复运营版

简介&#xff1a; 易校网校园综合跑腿小程序源码修复运营版&#xff0c;带服务端客户端前端文档说明。 源码安装方法&#xff1a; 需要准备小程序服务号 服务器 备案域名 校园网跑腿小程序源码需要准备 1.小程序 2.服务器&#xff08;推荐配置2h4g3m&#xff09; 3.域名…

【Python实战因果推断】13_线性回归的不合理效果3

目录 Regression Theory Single Variable Linear Regression Multivariate Linear Regression Frisch-Waugh-Lovell Theorem and Orthogonalization Regression Theory 我不打算太深入地探讨线性回归是如何构建和估计的。不过&#xff0c;一点点理论知识将有助于解释线性回归…