第三章 图论 No.11二分图,匈牙利算法与点覆盖

文章目录

    • 二分+染色:257. 关押罪犯
    • 增广路径
      • 372. 棋盘覆盖
    • 最小点覆盖
      • 376. 机器任务
    • 最大独立集
      • 378. 骑士放置
    • 最小路径点覆盖

image.png

二分+染色:257. 关押罪犯

257. 关押罪犯 - AcWing题库
image.png

最大最小问题,一眼二分
答案的范围在 [ 1 , 1 e 9 ] [1, 1e9] [1,1e9]之间,二分答案,check(mid)
check:将所有权值大于mid的边进行二分,若能得到二分图,返回true,否则返回false
最终将得到最优解ans,所有大于ans的边组成的图为二分图,若是图中有边的权值小于ans,那么这个图就不是二分图
当ans为0时,说明原图就是一张二分图,此时的答案也为0,不需要特判,所以二分的区间为 [ 0 , 1 e 9 ] [0, 1e9] [0,1e9]

#include <iostream>
#include <cstring>
using namespace std;

const int N = 20010, M = 2e5 + 10;
int h[N], e[M], ne[M], w[M], idx;
int color[N];
int n, m;

void add(int x, int y, int d)
{
    e[idx] = y, ne[idx] = h[x], w[idx] = d, h[x] = idx ++ ;
}

bool dfs(int x, int c, int mid)
{
    color[x] = c;
    for (int i = h[x]; i != -1; i = ne[i])
    {
        if (w[i] <= mid) continue;
        int y = e[i];
        if (!color[y])
        {
            if (!dfs(y, 3 - c, mid)) return false;
        }
        else if (color[y] == c) return false;
    }
    return true;
}

bool check(int mid)
{
    memset(color, 0, sizeof(color));
    for (int i = 1; i <= n; ++ i )
        if (!color[i])
            if (!dfs(i, 1, mid))
                return false;
                
    return true;
}

int main()
{
    memset(h, -1, sizeof(h));
    scanf("%d%d", &n, &m);
    int x, y, d;
    for (int i = 0; i < m; ++ i )
    {
        scanf("%d%d%d", &x, &y, &d);
        add(x, y, d), add(y, x, d);
    }
    
    int l = 0, r = 1e9;
    while (l < r)
    {
        int mid = l + r >> 1;
        if (check(mid)) r = mid;
        else l = mid + 1;
    }
    printf("%d\n", l);
    
    return 0;
}

增广路径

从二分图的非匹配点开始,经过非匹配边,匹配边,非匹配边,匹配边…最后到非匹配点的路径被称为增广路径
image.png
将所有匹配边删除,添加非匹配边,图中匹配的对数+1
最大匹配不存在增广路径


372. 棋盘覆盖

372. 棋盘覆盖 - AcWing题库
image.png

建图方式很特殊,将每个格子看成点,相邻格子之间连一条边,问题就转换成了从图中选择最多的边,使得每条边的点都不重复
这就是一个最大匹配问题
接着判断图是否是一个二分图,若不是二分图,那么不能使用匈牙利算法
n*m矩阵的奇数格和偶数格(横纵坐标之和)染上不同的颜色,相同颜色的为一组,那么整个矩阵就能被分成两个集合,由于只有相邻格子之间存在边,所以集合中的不存在边,只有集合之间存在边
image.png

枚举所有奇数格(或者偶数格),试着将其匹配。注意:不需要枚举坏掉的格子,匹配时也不用匹配坏掉的格子

#include <iostream>
#include <cstring>
using namespace std;

const int N = 110;
typedef pair<int, int> PII;
PII match[N][N];
bool g[N][N], st[N][N];
int dx[4] = { 0, 1, 0, -1 }, dy[4] = { 1, 0, -1, 0 };
int n, m;
    
bool find(int x, int y)
{
    for (int i = 0; i < 4; ++ i )
    {
        int nx = x + dx[i], ny = y + dy[i];
        if (!g[nx][ny] && nx >= 1 && nx <= n && ny >= 1 && ny <= n)
        {
            if (!st[nx][ny])
            {
                auto t = match[nx][ny];
                st[nx][ny] = true;
                if (t.first == 0 || find(t.first, t.second))
                {
                    match[nx][ny] = { x, y };
                    return true;
                }
            }
        }
    }
    return false;
}

int main()
{
    scanf("%d%d", &n, &m);
    int x, y;
    while (m -- )
    {
        scanf("%d%d", &x, &y);
        g[x][y] = true;
    }
    
    
    int res = 0;
    for (int i = 1; i <= n; ++ i )
        for (int j = 1; j <= n; ++ j )
            if ((i + j) % 2 && !g[i][j])
            {
                memset(st, false, sizeof(st));
                if (find(i, j)) res ++ ;
            }
                
    printf("%d\n", res);
    return 0;
}

debug:find的判断条件if (!g[nx][ny] && nx >= 1 && nx <= n && ny >= 1 && ny <= n)!g[nx][ny]写成了!g[x][y]
每次find之前st数组没有重置


最小点覆盖

给定一个无向图,从中选出最少的点,使得每条边只有一个端点被选择
结论:最小点覆盖 = 最大匹配数


376. 机器任务

376. 机器任务 - AcWing题库
image.png

分析题意:有k个任务,每个任务可以在A机器或者B机器上完成,但是机器必须调整为相应的模式,任务的执行顺序任意,求任意顺序中的最少调整次数

建图:将完成每个任务需要调整的模式看成点,一个任务有两个点,在这两点之间连线。显然,得到的图是一个二分图,由于不同任务在相同机器上需要调整的模式可能相同,这些点可以看成一个点
题目要完成所有任务,即选择每条边的一个点,根据题意也就是求最小点覆盖
用匈牙利求二分图的最大匹配即可
由于每台机器的初始状态为0,所以需要调整状态为0的任务不用切换模式,直接就能完成,因此建图时不需要建立这些任务

#include <iostream>
#include <cstring>
using namespace std;

const int N = 210, M = 1010;
int h[N], e[M], ne[M], idx;
int match[N]; bool st[N];
int n1, n2, m;

void add(int x, int y)
{
    e[idx] = y, ne[idx] = h[x], h[x] = idx ++ ;
}

bool find(int x)
{
    for (int i = h[x]; i != -1; i = ne[i])
    {
        int y = e[i];
        if (!st[y])
        {
            st[y] = true;
            if (match[y] == 0 || find(match[y]))
            {
                match[y] = x;
                return true;
            }
        }
    }
    return false;
}

int main()
{
    
    while (scanf("%d", &n1), n1)
    {
        idx = 0;
        memset(h, -1, sizeof(h));
        memset(match, 0, sizeof(match));
        scanf("%d%d", &n2, &m);
        int t, x, y;
        while (m -- )
        {
            scanf("%d%d%d", &t, &x, &y);
            if (x == 0 || y == 0) continue;
            add(x, y);
        }
        
        int res = 0;
        for (int i = 1; i <= n1; ++ i)
        {
            memset(st, false, sizeof(st));
            if (find(i)) res ++ ;
        }
        printf("%d\n", res);
    }
    
    return 0;
}

最大独立集

从一个无向图中选出最多的点,使得选出的点之间都没有边
等价于去掉最少的点,将所有边破坏
等价于最小点覆盖,等价于最大匹配
假设一共n个点,最大匹配数位m,最大独立集的数量为n - m
最大团
从一个无向图中选出最多的点,使得选出的点之间都有边


378. 骑士放置

378. 骑士放置 - AcWing题库
image.png

建图:矩阵中,能互相攻击到的格子之间建立一条边
那么问题就转换成了求图的最大独立集,即选择的格子之间都没有边,不能相互攻击
image.png

验证建的图是否为二分图,将奇数格和偶数格染不同的颜色,若当前坐标为 ( x , y ) (x, y) (x,y),那么该坐标之和为 x + y x + y x+y,要得到与之相连的坐标,就要将x±1,y±2,坐标之和要±一个奇数
假设坐标之和为奇数,加上奇数得到偶数,格子的颜色不同
假设坐标之和为偶数,加上奇数得到奇数,格子的颜色也不同
所以该图是一个二分图,可以使用匈牙利算法求最大匹配

#include <iostream>
#include <cstring>
using namespace std;

typedef pair<int, int> PII;
const int N = 110;
bool g[N][N], st[N][N];
PII match[N][N];
int dx[8] = { 1, 1, 2, 2, -1, -1, -2, -2 }, dy[8] = { 2, -2, 1, -1, 2, -2, 1, -1 };
int n, m, t;

bool find(int x, int y)
{
    for (int i = 0; i < 8; ++ i )
    {
        int nx = x + dx[i], ny = y + dy[i];
        if (!g[nx][ny] && nx >= 1 && nx <= n && ny >= 1 && ny <= m)
        {
            if (!st[nx][ny])
            {
                st[nx][ny] = true;
                auto t = match[nx][ny];
                if (t.first == 0 || find(t.first, t.second))
                {
                    match[nx][ny] = { x, y };
                    return true;
                }
            }
        }
    }
    return false;
}

int main()
{
    scanf("%d%d%d", &n, &m, &t);
    int x, y;
    for (int i = 0; i < t; ++ i )
    {
        scanf("%d%d", &x, &y);
        g[x][y] = true;
    }
    int res = 0;
    for (int i = 1; i <= n; ++ i )
        for (int j = 1; j <= m; ++ j )
            if (!g[i][j] && (i + j) % 2)
            {
                memset(st, 0, sizeof(st));
                if (find(i, j)) res ++ ;
            }
            
    printf("%d\n", n * m - t- res);
    return 0;
}

debug:求最大匹配时,只需要遍历一个集合中的点,可以是奇数格也可以是偶数格,即添加条件(i + j) % 2


最小路径点覆盖

针对有向无环图,用最少的互不相交(点不重复)的路径较所有点覆盖
没听懂,先跳过

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/76252.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

ReactDOM模块react-dom/client没有默认导出报错解决办法

import ReactDOM 模块“"E:/Dpandata/Shbank/rt-pro/node_modules/.pnpm/registry.npmmirror.comtypesreact-dom18.2.7/node_modules/types/react-dom/client"”没有默认导出。 解决办法 只需要在tsconfig.json里面添加配置 "esModuleInterop": true 即…

关于跨国文件传输需要了解的5点

我们在为企业客户解决各种IT问题的多年经验中&#xff0c;发现跨国文件传输一直是许多企业IT部门的难题。提升数据传输效率只是跨国文件传输的一个方面&#xff0c;还有更多的因素困扰着一些大型企业、集团。 作为企业文件传输的领先品牌&#xff0c;镭速(私有化部署方案&…

VectorStyler for Mac: 让你的创意无限绽放的全新设计工具

VectorStyler for Mac是一款专为Mac用户打造的矢量设计工具&#xff0c;它结合了功能强大的矢量编辑器和创意无限的样式编辑器&#xff0c;让你的创意无限绽放。 VectorStyler for Mac拥有直观简洁的用户界面&#xff0c;让你能够轻松上手。它提供了丰富的矢量绘图工具&#x…

flutter 常见的状态管理器

flutter 常见的状态管理器 前言一、Provider二、Bloc三、Redux四、GetX总结 前言 当我们构建复杂的移动应用时&#xff0c;有效的状态管理是至关重要的&#xff0c;因为应用的不同部分可能需要共享数据、相应用户交互并保持一致的状态。Flutter 中有多种状态管理解决方案&#…

机器学习深度学习——seq2seq实现机器翻译(数据集处理)

&#x1f468;‍&#x1f393;作者简介&#xff1a;一位即将上大四&#xff0c;正专攻机器学习的保研er &#x1f30c;上期文章&#xff1a;机器学习&&深度学习——从编码器-解码器架构到seq2seq&#xff08;机器翻译&#xff09; &#x1f4da;订阅专栏&#xff1a;机…

三菱plc 工程的系统参数fCPu参数与 可编程控制器的系统参数/CPu参数不一致。

三菱plc 工程的系统参数fCPu参数与 可编程控制器的系 统参数/CPu参数不一致。

掌握Python的X篇_30_使用python解析网页HTML

本篇将会介绍beutifulsoup4模块&#xff0c;可以用于网络爬虫、解析HTML和XML&#xff0c;对于没有接触过前端&#xff0c;不了解HTML是如何工作的&#xff0c;需要先解释一下什么事HTML。 1. HTML 网页中的各种布局等的背后都是非常简单的纯文本格式&#xff0c;那种格式称为…

Android的学习系列之Android Studio Setup安装

Android的学习系列之Android Studio Setup安装 [TOC](Android的学习系列之Android Studio Setup安装) 前言Android平台搭建总结 前言 还是项目需要&#xff0c;暂时搭建安卓的运行平台。 Android平台搭建 安装包 双击安装包&#xff0c;进入安装。 下一步 根据自己需求&a…

(7)(7.1) 使用航点和事件规划任务

文章目录 前言 7.1.1 设置Home位置 7.1.2 视频&#xff1a;制作并保存多路点任务 7.1.3 视频&#xff1a;加载已保存的多航点任务 7.1.4 使用说明 7.1.5 提示 7.1.6 自动网格 7.1.7 任务指令 7.1.8 任务结束 7.1.9 任务重置 7.1.10 MIS_OPTIONS 7.1.11 任务再出发 …

客户跟进轻松搞定:推荐一款功能全面的客户跟进软件

阅读本文您可以了解&#xff1a;1、如何选择客户跟进软件&#xff1b;2、简单好用的客户跟进软件推荐 客户跟进是建立并维护良好客户关系的关键步骤。通过定期的跟进&#xff0c;可以及时了解客户的需求和反馈&#xff0c;解决问题&#xff0c;提供支持&#xff0c;从而增强客…

ubuntu18.04下配置muduoC++11环境

1.安装muduo依赖的编译工具及库 Cmake sudo apt-get install cmakeBoost sudo apt-get install libboost-dev libboost-test-devcurl、c-ares DNS、google protobuf sudo apt-get install libcurl4-openssl-dev libc-ares-dev sudo apt-get install protobuf-compiler libp…

你知道什么是Curriculum Training模型吗

随着深度学习技术的飞速发展&#xff0c;研究人员在不断探索新的训练方法和策略&#xff0c;以提高模型的性能和泛化能力。其中&#xff0c;Curriculum Training&#xff08;课程学习&#xff09;模型作为一种前沿的训练方法&#xff0c;引起了广泛的关注和研究。本文将深入探讨…

如何实现安全上网

l 场景描述 政府、军工、科研等涉密单位或企业往往要比其他组织更早接触高精尖的技术与产品&#xff0c;相对应的数据保密性要求更高。常规的内外网物理隔离手段&#xff0c;已经满足不了这些涉密单位的保密需求&#xff0c;发展到现在&#xff0c;需求已经演变成既要保证网络…

Python爱心光波

文章目录 前言Turtle入门简单案例入门函数 爱心光波程序设计程序分析 尾声 前言 七夕要来啦&#xff0c;博主在闲暇之余创作了一个爱心光波&#xff0c;感兴趣的小伙伴们快来看看吧&#xff01; Turtle入门 Turtle 是一个简单而直观的绘图工具&#xff0c;它可以帮助你通过简…

【linux】2 软件管理器yum和编辑器vim

目录 1. linux软件包管理器yum 1.1 什么是软件包 1.2 关于rzsz 1.3 注意事项 1.4 查看软件包 1.5 如何安装、卸载软件 1.6 centos 7设置成国内yum源 2. linux开发工具-Linux编辑器-vim使用 2.1 vim的基本概念 2.2 vim的基本操作 2.3 vim正常模式命令集 2.4 vim末行…

【Unity】VS Code 没有智能提示 Unity 中的类

正常来说&#xff0c;VS Code中会对部分输入类名进行提示&#xff0c;如下图所述 假如你从Unity 中进入 VS Code后发现没有提示相关 Unity的类&#xff0c;可能是 Unity 中 有关于 VS Code的相关Package 没有跟着 VS Code升级到最新版本。 点击Unity Windows 下拉框中的 Pac…

拒绝摆烂!C语言练习打卡第二天

&#x1f525;博客主页&#xff1a;小王又困了 &#x1f4da;系列专栏&#xff1a;每日一练 &#x1f31f;人之为学&#xff0c;不日近则日退 ❤️感谢大家点赞&#x1f44d;收藏⭐评论✍️ 目录 一、选择题 &#x1f4dd;1.第一题 &#x1f4dd;2.第二题 &#x1f4dd;…

DIP:《Deep Image Prior》经典文献阅读总结与实现

文章目录 Deep Image Prior1. 方法原理1.1 研究动机1.2 方法 2. 实验验证2.1 去噪2.2 超分辨率2.3 图像修复2.4 消融实验 3. 总结 Deep Image Prior 1. 方法原理 1.1 研究动机 动机 深度神经网络在图像复原和生成领域有非常好的表现一般归功于神经网络学习到了图像的先验信息…

分布式定时任务系列5:XXL-job中blockingQueue的应用

传送门 分布式定时任务系列1&#xff1a;XXL-job安装 分布式定时任务系列2&#xff1a;XXL-job使用 分布式定时任务系列3&#xff1a;任务执行引擎设计 分布式定时任务系列4&#xff1a;任务执行引擎设计续 Java并发编程实战1&#xff1a;java中的阻塞队列 引子 这篇文章的…

图片懒加载指令-vueUse

基于Vue的自定义钩子集合 https://vueuse.org/ 适用于Vue 3和Vue2.7版本之后 基于vueUse定义懒加载指令