[吃瓜教程]南瓜书第4章决策树

1.决策树的算法原理

  • 从逻辑角度,条件判断语句的组合;
  • 从几何角度,根据某种准则划分特征空间;
    是一种分治的思想,其最终目的是将样本约分约纯,而划分的核心是在条件的选择或者说是**特征空间的划分标准 **

2.信息熵

1)自信息:
I ( X ) = − l o g b p ( x ) I(X)=-log_bp(x) I(X)=logbp(x)
当b=2时单位为bit,当b=e时单位为nat
2)信息熵(自信息的期望): 度量随机变量X的不确定性,信息熵越大越不确定
H ( X ) = E [ I ( X ) ] = − ∑ x p ( x ) l o g b p ( x ) H(X)=E[I(X)]=-\sum_xp(x)log_bp(x) H(X)=E[I(X)]=xp(x)logbp(x)
信息熵计算时约定:若p(x)=0,则 p ( x ) l o g b p ( x ) = 0 p(x)log_bp(x)=0 p(x)logbp(x)=0.当X的某个取值的概率为1时信息熵最小,值为0,当X的各个取值的概率均等时信息熵最大,最不缺定,其值为 l o g b ∣ X ∣ log_b|X| logbX,其中 ∣ X ∣ |X| X表示X可能的取值个数。这里可以想象一个例子,一个正常的筛子,它的信息熵最大,而特制的六面都是六的筛子,因为值确定了,所以信息熵最小。
这里的信息熵的最大值的简单的做个推导,在随机变量X的各个取值的概率均等的情况下:
− ∑ x p ( x ) l o g b p ( x ) − − − − − − − − − − − = − p ( x ) l o g b p ∣ X ∣ ( x ) − − − − − − − − − − − = − 1 ∣ X ∣ l o g b ∣ X ∣ − ∣ X ∣ − − − − − − − − − − − = l o g b ∣ X ∣ -\sum_xp(x)log_bp(x)\newline -----------\newline =-p(x)log_bp^{|X|}(x)\newline -----------\newline =-\frac{1}{|X|}log_b|X|^{-|X|}\newline -----------\newline =log_b|X| xp(x)logbp(x)=p(x)logbpX(x)=X1logbXX=logbX

将样本类别标记y视作随机变量,各个类别在样本集合D中的占比 p k ( k = 1 , 2 , . . . , ∣ y ∣ ) p_k(k=1,2,...,|y|) pk(k=1,2,...,y)视作各个类别取值的概率,则样本集合D(随机变量y)的信息熵(底数取为2)为
E n t ( D ) = − ∑ k = 1 ∣ y ∣ p k l o g 2 p k Ent(D)=-\sum^{|y|}_{k=1}p_klog_2p_k Ent(D)=k=1ypklog2pk
此时的信息熵所代表的不确定性可以转换理解为集合内样本的纯度。理解一下,我们希望我们划分出来的空间内的样本的y的概率越大越好,这样我们就把各个y的不同值划分的很好了,这就对应了信息熵中的期望信息熵最小的情况,因此可以用信息熵来表示集合内样本的纯度,信息熵越小样本的纯度越高。
3)条件熵:
Y的信息熵关于概率分布X的期望,在已知X后Y的不确定性
H ( Y ∣ X ) = ∑ x p ( x ) H ( Y ∣ X = x ) H(Y|X)=\sum_xp(x)H(Y|X=x) H(YX)=xp(x)H(YX=x)
从单个属性(特征)a的角度来看,假设其可能取值为 a 1 , a 2 , . . . , a V {a^1,a^2,...,a^V} a1,a2,...,aV, D v D^v Dv表示属性a取值为 a v ∈ a 1 , a 2 , . . . , a V a^v\in{a^1,a^2,...,a^V} ava1,a2,...,aV的样本集合, ∣ D v ∣ ∣ D ∣ \frac{|D^v|}{|D|} DDv表示占比,那么在已知属性a的取值后,样本集合D的条件熵为
∑ v = 1 V ∣ D v ∣ ∣ D ∣ E n t ( D v ) \sum^V_{v=1}\frac{|D^v|}{|D|}Ent(D^v) v=1VDDvEnt(Dv)
这里上下两部分的关系,其实下面的部分再更加具体的解释上面的式子。这里第二部分假设X是只有一个维度,也就是特征a,而随机变量X的取值,这里就是a的具体的取值会影响到Y的信息熵,也就是说, D v D \frac{D^v}{D} DDv就是 p ( x ) p(x) p(x),而 H ( Y ∣ X = x ) H(Y|X=x) H(YX=x)就是 E n t ( D v ) Ent(D^v) Ent(Dv)。这样可能好理解一点?
4)信息增益
在已知属性(特征)a的取值后y的不确定性减少的量,也即纯度的提升:
G a i n ( D , a ) = E n t ( D ) − ∑ v = 1 D ∣ D v ∣ ∣ D ∣ E n t ( D v ) Gain(D,a)=Ent(D)-\sum_{v=1}^D\frac{|D^v|}{|D|}Ent(D^v) Gain(D,a)=Ent(D)v=1DDDvEnt(Dv)

3.决策树

3.1ID3决策树

以信息增益为准则来选择划分属性的决策树
a ∗ = arg max ⁡ a ∈ A G a i n ( D , a ) a_*=\argmax_{a\in A} Gain(D,a) a=aAargmaxGain(D,a)
ID3的问题:使用信息增益准则对可能取值数目较多的属性 有所偏好
代码:

# 导入必要的库
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree
import matplotlib.pyplot as plt

# 加载西瓜数据集
data = {
    "编号": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13],
    "色泽": ["青绿", "乌黑", "乌黑", "青绿", "浅白", "青绿", "乌黑", "浅白", "青绿", "浅白", "乌黑", "浅白", "青绿"],
    "根蒂": ["蜷缩", "蜷缩", "蜷缩", "蜷缩", "蜷缩", "稍蜷", "稍蜷", "稍蜷", "硬挺", "硬挺", "硬挺", "蜷缩", "蜷缩"],
    "敲声": ["浊响", "沉闷", "浊响", "沉闷", "浊响", "浊响", "浊响", "浊响", "清脆", "清脆", "清脆", "浊响", "浊响"],
    "纹理": ["清晰", "清晰", "清晰", "清晰", "清晰", "稍糊", "稍糊", "稍糊", "清晰", "清晰", "稍糊", "模糊", "稍糊"],
    "脐部": ["凹陷", "凹陷", "凹陷", "凹陷", "凹陷", "稍凹", "稍凹", "稍凹", "平坦", "平坦", "平坦", "稍凹", "稍凹"],
    "触感": ["硬滑", "硬滑", "硬滑", "硬滑", "硬滑", "软粘", "硬滑", "硬滑", "软粘", "硬滑", "硬滑", "硬滑", "硬滑"],
    "好瓜": ["是", "是", "是", "是", "否", "否", "否", "否", "否", "否", "否", "否", "否"]
}

# 转换为DataFrame
df = pd.DataFrame(data)

# 将'好瓜'列转换为二进制值
df['好瓜'] = df['好瓜'].map({'是': 1, '否': 0})

# 特征和目标变量
features = df.drop(['编号', '好瓜'], axis=1)
target = df['好瓜']

# 使用get_dummies进行one-hot编码
features_encoded = pd.get_dummies(features)

# 将数据集划分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(features_encoded, target, test_size=0.3, random_state=42)

# 初始化决策树分类器(使用ID3算法)
clf = DecisionTreeClassifier(criterion='entropy', random_state=42)

# 训练模型
clf.fit(X_train, y_train)

# 预测测试集
y_pred = clf.predict(X_test)

# 计算准确率
accuracy = clf.score(X_test, y_test)
print(f'模型的准确率是: {accuracy*100:.2f}%')

# 可视化决策树
plt.figure(figsize=(20,10))
tree.plot_tree(clf, filled=True, feature_names=features_encoded.columns, class_names=['否', '是'])
plt.show()

# 存储决策树模型
import joblib
joblib.dump(clf, 'decision_tree_model.pkl')

# 加载模型并进行预测(示例)
loaded_model = joblib.load('decision_tree_model.pkl')
sample_data = X_test.iloc[0].values.reshape(1, -1)
prediction = loaded_model.predict(sample_data)
print(f'预测结果: {"是" if prediction[0] == 1 else "否"}')

可视化决策树:
请添加图片描述

3.2 C4.5决策树

为了解决ID3的问题,C4.5使用增益率代替信息增益,增益率的定义如下:
G a i n r a t e ( D , a ) = G a i n ( D , a ) I V ( a ) Gain_rate(D,a)=\frac{Gain(D,a)}{IV(a)} Gainrate(D,a)=IV(a)Gain(D,a)
其中,
I V ( a ) = − ∑ v = 1 V ∣ D v ∣ ∣ D ∣ l o g 2 ∣ D v ∣ ∣ D ∣ IV(a)=-\sum_{v=1}^V\frac{|D^v|}{|D|}log_2\frac{|D^v|}{|D|} IV(a)=v=1VDDvlog2DDv
称为属性a的固有值,a的可能取值个数V越大,通常其固有值也越大。

C4.5的问题: 增益率对可能取值数目较少的属性有所偏好
因此,C4.5采用启发式方法:先选出信息增益高于平均水平的属性,然后再从中选择增益率最高的。
代码:

# 导入必要的库
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree
import matplotlib.pyplot as plt

# 创建西瓜数据集
data = {
    "Number": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13],
    "Color": ["Green", "Black", "Black", "Green", "White", "Green", "Black", "White", "Green", "White", "Black", "White", "Green"],
    "Root": ["Curled", "Curled", "Curled", "Curled", "Curled", "Slightly Curled", "Slightly Curled", "Slightly Curled", "Stiff", "Stiff", "Stiff", "Curled", "Curled"],
    "Knock": ["Dull", "Dull", "Dull", "Dull", "Dull", "Dull", "Dull", "Dull", "Clear", "Clear", "Clear", "Dull", "Dull"],
    "Texture": ["Clear", "Clear", "Clear", "Clear", "Clear", "Slightly Blurry", "Slightly Blurry", "Slightly Blurry", "Clear", "Clear", "Slightly Blurry", "Blurry", "Slightly Blurry"],
    "Navel": ["Indented", "Indented", "Indented", "Indented", "Indented", "Slightly Indented", "Slightly Indented", "Slightly Indented", "Flat", "Flat", "Flat", "Slightly Indented", "Slightly Indented"],
    "Touch": ["Hard and Smooth", "Hard and Smooth", "Hard and Smooth", "Hard and Smooth", "Hard and Smooth", "Soft and Sticky", "Hard and Smooth", "Hard and Smooth", "Soft and Sticky", "Hard and Smooth", "Hard and Smooth", "Hard and Smooth", "Hard and Smooth"],
    "Good": ["Yes", "Yes", "Yes", "Yes", "No", "No", "No", "No", "No", "No", "No", "No", "No"]
}

# 转换为DataFrame
df = pd.DataFrame(data)

# 将'Good'列转换为二进制值
df['Good'] = df['Good'].map({'Yes': 1, 'No': 0})

# 特征和目标变量
features = df.drop(['Number', 'Good'], axis=1)
target = df['Good']

# 使用get_dummies进行one-hot编码
features_encoded = pd.get_dummies(features)

# 将数据集划分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(features_encoded, target, test_size=0.3, random_state=42)

# 初始化决策树分类器(使用C4.5算法,即使用信息增益比)
clf = DecisionTreeClassifier(criterion='entropy', random_state=42, splitter='best')

# 训练模型
clf.fit(X_train, y_train)

# 可视化决策树
plt.figure(figsize=(20,10))
tree_plot = tree.plot_tree(clf, filled=True, feature_names=features_encoded.columns, class_names=['No', 'Yes'])
plt.show()

可视化决策树:
请添加图片描述

3.3CART决策树

基尼值: 从样本集合D中随机抽取两个样本,其类别标记不一致的概率。因此,基尼值越小,碰到异类的概率就越小,纯度自然越高。(对应信息熵)
G i n i ( D ) = ∑ k = 1 ∣ y ∣ ∑ k ′ ≠ k p k p k ′ = ∑ k = 1 ∣ y ∣ p k ( 1 − p k ) = 1 − ∑ k = 1 ∣ y ∣ p k 2 Gini(D)=\sum_{k=1}^{|y|}\sum_{k'\neq k}p_kp_{k'}=\sum_{k=1}^{|y|}p_k(1-p_k)=1-\sum^{|y|}_{k=1}p_k^2 Gini(D)=k=1yk=kpkpk=k=1ypk(1pk)=1k=1ypk2
基尼指数: 属性a的基尼指数(对应条件熵):
G i n i i n d e x ( D , a ) = ∑ v = 1 V ∣ D v ∣ ∣ D ∣ G i n i ( D v ) Gini_index(D,a)=\sum_{v=1}^V\frac{|D^v|}{|D|}Gini(D^v) Giniindex(D,a)=v=1VDDvGini(Dv)

CART决策树: 选择基尼指数最小的属性作为最优划分属性,最后构造了一个二叉树。
a ∗ = arg max ⁡ a ∈ A G i n i _ i n d e x ( D , a ) a_*=\argmax_{a\in A} Gini\_index(D,a) a=aAargmaxGini_index(D,a)
CART决策树的实际构造算法如下:

  • 对每个属性a的每个可能取值v,将数据集D分为a=v和a≠v两部分计算基尼指数,即
    G i n i i n d e x ( D , a ) = ∣ D a = v ∣ ∣ D ∣ G i n i ( D a = v ) + ∣ D a ≠ v ∣ ∣ D ∣ G i n i ( D a ≠ v ) Gini_index(D,a)=\frac{|D^{a=v}|}{|D|}Gini(D^{a=v})+\frac{|D^{a\neq v}|}{|D|}Gini(D^{a\neq v}) Giniindex(D,a)=DDa=vGini(Da=v)+DDa=vGini(Da=v)
  • 选择基尼指数最小的属性及其对应取值作为最优划分属性和最优划分点;
  • 重复上述步骤,直至满足停止条件

代码:

# 导入必要的库
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree
import matplotlib.pyplot as plt

# 创建西瓜数据集
data = {
    "Number": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13],
    "Color": ["Green", "Black", "Black", "Green", "White", "Green", "Black", "White", "Green", "White", "Black", "White", "Green"],
    "Root": ["Curled", "Curled", "Curled", "Curled", "Curled", "Slightly Curled", "Slightly Curled", "Slightly Curled", "Stiff", "Stiff", "Stiff", "Curled", "Curled"],
    "Knock": ["Dull", "Dull", "Dull", "Dull", "Dull", "Dull", "Dull", "Dull", "Clear", "Clear", "Clear", "Dull", "Dull"],
    "Texture": ["Clear", "Clear", "Clear", "Clear", "Clear", "Slightly Blurry", "Slightly Blurry", "Slightly Blurry", "Clear", "Clear", "Slightly Blurry", "Blurry", "Slightly Blurry"],
    "Navel": ["Indented", "Indented", "Indented", "Indented", "Indented", "Slightly Indented", "Slightly Indented", "Slightly Indented", "Flat", "Flat", "Flat", "Slightly Indented", "Slightly Indented"],
    "Touch": ["Hard and Smooth", "Hard and Smooth", "Hard and Smooth", "Hard and Smooth", "Hard and Smooth", "Soft and Sticky", "Hard and Smooth", "Hard and Smooth", "Soft and Sticky", "Hard and Smooth", "Hard and Smooth", "Hard and Smooth", "Hard and Smooth"],
    "Good": ["Yes", "Yes", "Yes", "Yes", "No", "No", "No", "No", "No", "No", "No", "No", "No"]
}

# 转换为DataFrame
df = pd.DataFrame(data)

# 将'Good'列转换为二进制值
df['Good'] = df['Good'].map({'Yes': 1, 'No': 0})

# 特征和目标变量
features = df.drop(['Number', 'Good'], axis=1)
target = df['Good']

# 使用get_dummies进行one-hot编码
features_encoded = pd.get_dummies(features)

# 将数据集划分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(features_encoded, target, test_size=0.3, random_state=42)

# 初始化决策树分类器(使用CART算法,即使用Gini系数)
clf_cart = DecisionTreeClassifier(criterion='gini', random_state=42)

# 训练模型
clf_cart.fit(X_train, y_train)

# 预测测试集
y_pred_cart = clf_cart.predict(X_test)

# 计算准确率
accuracy_cart = clf_cart.score(X_test, y_test)
print(f'模型的准确率是: {accuracy_cart*100:.2f}%')

# 可视化决策树
plt.figure(figsize=(20,10))
tree_plot_cart = tree.plot_tree(clf_cart, filled=True, feature_names=features_encoded.columns, class_names=['No', 'Yes'])
plt.show()

可视化决策树:
请添加图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/762117.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

编写一个程序,实现字符串大小写的转换并倒序输出。

编写一个程序,实现字符串大小写的转换并倒序输出。要求如下: (1)使用for循环将字符串“ITcastHeiMa”从最后一个字符开始遍历。 (2)遍历的当前字符如果是大写字符,就使用toLowerCase()方法将其转换为小写字符&#xff…

2024-07-01_外语学习

文章目录 前言1、Los Angeles至于单个los 是什么意思?我们可以逐词翻译这个西班牙语句子 2. Extraneous non-props attributes (style) were passed to component but could not be automatically inherited because component renders fragment or text root nodes…

鸿蒙3.0WebView网络错误问题

背景,荣耀9x,混淆才会出这个问题。 [ERROR:ssl_client_socket_impl.cc(981)] handshake failed; returned -1, SSL error code 1, net_error -2 NetError.java int SSLClientSocketImpl::DoHandshake() {crypto::OpenSSLErrStackTracer err_tracer(FRO…

【深入浅出 】——【Python 字典】——【详解】

目录 1. 什么是 Python 字典? 1.1 字典的基本概念 1.2 字典的用途 1.3 字典的优势 2. 字典的基本特点 2.1 键的唯一性 2.2 可变性 2.3 无序性 3. 如何创建字典? 3.1 使用 {} 符号 3.2 使用 dict() 工厂方法 3.3 使用 fromkeys() 方法 4. 字…

优盘有盘符显示0字节:故障解析与数据恢复策略

一、优盘有盘符显示0字节现象描述 在使用优盘的过程中,我们有时会遇到一种令人困惑的情况:插入优盘后,电脑能正常识别到优盘的盘符,但当我们尝试访问其中的数据时,却发现优盘的容量显示为0字节,无法读取或…

武汉星起航:自运营团队精准把握亚马逊红利,引领跨境电商新潮流

在全球化的浪潮下,跨境电商行业蓬勃发展,为众多企业带来了前所未有的机遇。武汉星起航电子商务有限公司便是其中的佼佼者,其自运营团队凭借对亚马逊平台的深入了解和丰富的运营经验,成功抓住了亚马逊的流量红利,为公司…

[leetcode]squares-of-a-sorted-array. 有序数组的平方

. - 力扣&#xff08;LeetCode&#xff09; class Solution { public:vector<int> sortedSquares(vector<int>& nums) {int n nums.size();vector<int> ans(n);for (int i 0, j n - 1, pos n - 1; i < j;) {if (nums[i] * nums[i] > nums[j] *…

asp.net的承载环境的配置与应用

[S1513]基于环境变量的配置初始化 应用启动的时候会将当前的环境变量作为配置源来创建承载最初配置数据的IConfiguration对象&#xff0c;但它只会选择名称以“ASPNETCORE_”为前缀的环境变量&#xff08;通过静态类型Host的CreateDefaultBuilder方法创建的HostBuilder默认选择…

Es结合springboot(笔记回忆)

导包 <!--导入es--> <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-elasticsearch</artifactId> </dependency> <dependency><groupId>org.springframework.boot<…

换天空背景的软件有哪些?摄影师必备,让背景从灰暗到绚烂

在摄影的世界里&#xff0c;背景往往能够为照片增添一种难以言喻的情感色彩。 有时&#xff0c;一个简单的天空背景更换&#xff0c;就能让整张照片焕发出全新的生命力&#xff0c;表达出摄影师想要传达的情感和故事。 如今&#xff0c;随着科技的发展&#xff0c;一些换天空…

操作系统真象还原:进一步完善内核

第12章-进一步完善内核 12.1 Linux系统调用浅析 系统调用就是让用户进程申请操作系统的帮助&#xff0c;让操作系统帮其完成某项工作&#xff0c;也就是相当于用户进程调用了操作系统的功能&#xff0c;因此“系统调用”准确地来说应该被称为“操作系统功能调用”。 Linux 系…

【必看】卖惨营销

经常卖惨的人到底是什么心理&#xff1f; Berry Ni同学说&#xff1a; 吸引别人的注意力。想要得到关注。 让你降低对他的期待。 让你能够在他做好一件小事的情况下就表扬他。 控制你对他的想法认知。 ​ 浪矢心理同学说&#xff1a; 1&#xff0c;求关注。他觉得买惨有好处&…

64.WEB渗透测试-信息收集- WAF、框架组件识别(4)

免责声明&#xff1a;内容仅供学习参考&#xff0c;请合法利用知识&#xff0c;禁止进行违法犯罪活动&#xff01; 内容参考于&#xff1a; 易锦网校会员专享课 上一个内容&#xff1a;63.WEB渗透测试-信息收集- WAF、框架组件识别&#xff08;3&#xff09;-CSDN博客 我们在…

Stable Diffusion用AI绘画古诗文视频副业项目,轻松涨粉10W+,项目拆解分享给你【附详细玩法教程】

项目介绍 古诗文自古以来就有着广泛的受众&#xff0c;特别是在短视频平台上&#xff0c;它不仅有很高的流量潜力&#xff0c;还能给观众带来美的享受和教育意义。通过使用AI绘画工具&#xff0c;创作者能够将古诗文中的场景生动地呈现出来&#xff0c;制作出有艺术性、有教育…

测评:【AI办公】版本更迭与AI加持下的最新ONLYOFFICE桌面编辑器8.1

你是否还在为没有一款合适的在线桌面编辑器而苦恼&#xff1f;你是否还在因为办公软件的选择过少而只能使用WPS或者office&#xff1f;随着办公需求的不断变化和发展&#xff0c;办公软件也在不断更新和改进。ONLYOFFICE 作为一款全功能办公软件&#xff0c;一直致力于为用户提…

代理设计模式和装饰器设计模式的区别

代理设计模式: 作用:为目标(原始对象)增加功能(额外功能,拓展功能) 三种经典应用场景: 1&#xff1a;给原始对象增加额外功能(spring添加事务,Mybatis通过代理实现缓存功能等等) 2&#xff1a;远程代理&#xff08;网络通信&#xff0c;输出传输&#xff08;RPC&#xff0c;D…

ChatGPT-4o医学应用、论文撰写、数据分析与可视化、机器学习建模、病例自动化处理、病情分析与诊断支持

2022年11月30日&#xff0c;可能将成为一个改变人类历史的日子——美国人工智能开发机构OpenAI推出了聊天机器人ChatGPT-3.5&#xff0c;将人工智能的发展推向了一个新的高度。2023年11月7日&#xff0c;OpenAI首届开发者大会被称为“科技界的春晚”&#xff0c;吸引了全球广大…

Linux_生产消费模型_Block_Queue

目录 一、互斥锁 1.1 错误的抢票 1.1.1 类的成员函数与构造 1.1.2 start 函数 1.1.3 线程的回调函数 1.1.4 main 函数 1.1.5 结果 1.2 概念 1.3 相关系统调用 1.3.1 锁的创建 1.3.2 锁的初始化 1.3.2.1 动态初始化 1.3.2.2 静态初始化 1.3.3 锁的销毁 1.3.4…

【Linux系统】文件描述符fd

1.回顾一下文件 我们之前对文件的理解是在语言层上&#xff0c;而语言层去理解文件是不可能的&#xff01;&#xff01;&#xff01; 下面是一份c语言文件操作代码&#xff01;&#xff01;&#xff01; #include<stdio.h> int main() {FILE* fd fopen("lo…

节点级、系统级、实车级的LIN测试主要差异点

文章目录 前言一、节点级1.前期准备2.测试执行 二、系统级1.前期准备2.测试执行 三、实车级1.前期准备2.测试执行 总结 前言 LIN协议一致性测试主要指的是物理层&#xff08;电阻、电容、电压、地偏移、显隐性电平、频率占空比、位时间等&#xff09;、数据链路层&#xff08;…