【Python】利用代理IP爬取当当网数据做数据分析

前言

        在数字化浪潮的推动下,电商平台已经彻底改变了我们的购物方式。从简单的在线交易到复杂的用户交互,电商平台积累了海量的用户数据。这些数据,如同隐藏在深海中的宝藏,等待着被发掘和利用。通过分析用户的浏览、搜索、购买等行为,商家可以更准确地理解用户需求,提供个性化的推荐和服务。这不仅能够提升用户的购物体验,还能增加用户粘性和忠诚度。此外,电商平台数据分析在库存管理、价格策略制定、竞争分析、风险管理等方面也发挥着重要作用。它能够帮助商家优化库存,制定合理的定价策略,了解竞争对手的市场表现,以及及时发现并应对潜在的风险。

在本文中,我们将深入探讨如何构建出既高效的爬虫,为你的电商业务提供强大的支持。

亮数据数据获取工具icon-default.png?t=N7T8https://www.bright.cn/proxy-types?utm_source=brand&utm_campaign=brnd-mkt_cn_csdn_yingjie

利用代理IP爬取当当网

网站分析

        本次爬取的目标是某知名购书平台,抓取内容是:标题、链接、价格、定价、图片链接。为了防止被识别为爬虫,首先我们先要获取登录用户的cookie。登录状态下按f12,选择网络,任选其中一个流量,在请求头中找到cookie并复制。

        接下来,我们需要分析一下搜索请求的构建。可以看到我们搜索高等数学的时候,请求通过url构建。url中的key值代表搜索内容,act代表动作,page_index代表页码。

        最后我们需要确定商品元素在页面中的结构。可以看到所有商品位于一个ul中,每个商品部对应一个li标签,都有对应的class标记。其中标题位于p标签的title属性,链接位于href标签,图片链接在下层的img标签中,价钱位于另一个p标签中。之后我们将用xpath定位这些标签。

获取代理

数据获取工具icon-default.png?t=N7T8https://www.bright.cn/proxy-types?utm_source=brand&utm_campaign=brnd-mkt_cn_csdn_yingjie

        为了进一步隐藏爬虫身份,我们需要使用代理来隐藏真实的IP地址。这里我们选择亮数据作为代理服务商。选择代理服务商主要关注点在稳定性、ip区域多样性和价钱上。

        亮数据的IP代理网络覆盖全球195个国家,拥有超过7200万个IP地址,确保用户可以进行任意城市定位,并且每日更新上百万IP,保证了数据采集的广泛性和实时性。公司提供的代理IP网络类型包括动态住宅、静态住宅、移动和机房,全方位满足用户的不同需求。在全球范围内,亮数据拥有超过2600个代理服务器,构建了一个高速稳定的智能交通网络,确保了99.99%的稳定运行时间,即使在网络高峰期间也能保持服务的稳定性。此外,亮数据所有服务都支持随时暂停,并且计费方式灵活多样。

        首先我们需要注册并登录亮数据。之后来到用户控制面板,添加代理机房。

这里需要我们配置代理的名字和ip区域,其他选项保持默认。

之后需要将我们本机ip添加到白名单,并记录下来主机号、账户名和密码。

编写程序

        首先我们要编写get_ip函数从亮数据服务器获取代理ip定义代理服务器的主机、用户名和密码。然后使用这些信息构建了一个代理URL。最后发送HTTP请求到http://lumtest.com/myip.json获取当前的代理IP地址。

def get_ip():
    host = ''  # 主机
    user_name = ''  # 用户名
    password = ''  # 密码
    proxy_url = f'http://{user_name}:{password}@{host}'  # 将上面三个参数拼接为专属代理IP获取网址
    proxies = {
        'http': proxy_url,
        'https': proxy_url
    }
 
    url = "http://lumtest.com/myip.json"  # 默认获取的接口(不用修改)
    response = requests.get(url, proxies=proxies, timeout=10).text  # 发送请求获取IP
    # print('代理IP详情信息:',response)
    response_dict = eval(response)  # 将字符串转为字典,方便我们提取代理IP
    ip = response_dict['ip']
    # print('IP:',ip)
    return ip
 

        之后需要我们定义get_html_str函数,来向电商网站发送搜索请求:先定义请求头,模拟浏览器访问,其中包含了一些cookie信息。调用get_ip函数获取代理IP,并设置到请求中。最后发送HTTP请求到指定的URL,并返回网页源码。

def get_html_str(url):
    """发送请求,获取网页源码"""
    # 请求头模拟浏览器(注意这里一定添加自己已经登录的cookie才可以)
    headers = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/95.0.4638.69 Safari/537.36',
        'cookie': ''
    }
 
    # 添加代理IP
    proxies = get_ip()
    # proxies = {}
    # 添加请求头和代理IP发送请求
    response = requests.get(url, headers=headers, proxies=proxies)
    # 获取网页源码
    html_str = response.text
    # 返回网页源码
    return html_str
 

        写下来要定义get_data函数,来解析网页中的元素,找到目标文本:首先接收网页源码、页码和数据列表作为参数。然后使用lxml.etree解析网页源码,提取商品信息,包括标题、价格、定价、商品链接和图片链接。最后将提取的数据添加到数据列表中。

def get_data(html_str, page, data_list):
    """提取数据写入列表"""
    # 将html字符串转换为etree对象方便后面使用xpath进行解析
    html_data = etree.HTML(html_str)
    # 利用xpath取到所有的li标签
    li_list = html_data.xpath('//div[@dd_name="普通商品区域"]/ul/li')
    # 打印一下li标签个数
    # print(len(li_list))
    # 遍历li_list列表取到某一个商品的对象标签
    for li in li_list:
        # 标题
        title = li.xpath('.//a[@class="pic"]/@title')
        title = ''.join(title)
        # 商品链接
        goods_url = 'https:' + li.xpath('.//a[@class="pic"]/@href')[0]
        # 价格
        price = li.xpath('.//p[@class="price"]/span[@class="price_n"]/text()')[0]
        print(price)
        # 定价
        pre_price = li.xpath('.//p[@class="price"]/span[@class="price_r"]/text()')[0]
        # 图片链接
        img_url = 'https:' + li.xpath('.//a[@class="pic"]/img/@src')[0]
 
        print({'页码': page, '标题': title, '价格': price, '定价': pre_price, '商品链接': goods_url,
               '图片链接': img_url})
        data_list.append(
            {'页码': page, '标题': title, '价格': price, '定价': pre_price, '商品链接': goods_url,
             '图片链接': img_url})
 

        接下来定义to_excel函数,将获取到的结果保存为excel文件:首先将数据列表转换为pandas的DataFrame对象。然后删除DataFrame中的重复数据。最后将DataFrame保存为Excel文件。

 
def to_excel(data_list):
    """写入Excel"""
    df = pd.DataFrame(data_list)
    df.drop_duplicates()  # 删除重复数据
    df.to_excel('当当采集数据集.xlsx')

        最后定义一个main函数方便调节参数、控制流程:首先设置爬取的关键词和页数。然后初始化一个空的数据列表。之后循环遍历每一页,调用get_html_str和get_data函数获取数据。最后调用to_excel函数将数据写入Excel文件。

 
def main():
    # 1. 设置爬取的关键词和页数
    keyword = '手机'
    page_num = 1  # 爬取的页数
    data_list = []  # 空列表用于存储数据
    for page in range(1, page_num + 1):
        url = f'https://search.dangdang.com/?key={keyword}&act=input&page_index={page}'
        print(url)
        # 2. 获取指定页的网页源码
        html_str = get_html_str(url)
        # print(html_str)
        # 3. 提取数据
        get_data(html_str, page, data_list)
        time.sleep(1)
    # 4. 写入Excel
    to_excel(data_list)

完整代码如下:

import pandas as pd  # pandas,用于写入Excel文件
import requests  # python基础爬虫库
from lxml import etree  # 可以将网页转换为Elements对象
import time  # 防止爬取过快可以睡眠一秒

def get_ip():
    host = ''  # 主机
    user_name = ''  # 用户名
    password = ''  # 密码
    proxy_url = f'http://{user_name}:{password}@{host}'  # 将上面三个参数拼接为专属代理IP获取网址
    proxies = {
        'http': proxy_url,
        'https': proxy_url
    }
    url = "http://lumtest.com/myip.json"  # 默认获取的接口(不用修改)
    response = requests.get(url, proxies=proxies, timeout=10).text  # 发送请求获取IP
    # print('代理IP详情信息:',response)
    response_dict = eval(response)  # 将字符串转为字典,方便我们提取代理IP
    ip = response_dict['ip']
    # print('IP:',ip)
    return ip

def get_html_str(url):
    """发送请求,获取网页源码"""
    # 请求头模拟浏览器(注意这里一定添加自己已经登录的cookie才可以)
    headers = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/95.0.4638.69 Safari/537.36',
        'cookie': ''
    }
    # 添加代理IP
    proxies = get_ip()
    # proxies = {}
    # 添加请求头和代理IP发送请求
    response = requests.get(url, headers=headers, proxies=proxies)
    # 获取网页源码
    html_str = response.text
    # 返回网页源码
    return html_str

def get_data(html_str, page, data_list):
    """提取数据写入列表"""
    # 将html字符串转换为etree对象方便后面使用xpath进行解析
    html_data = etree.HTML(html_str)
    # 利用xpath取到所有的li标签
    li_list = html_data.xpath('//div[@dd_name="普通商品区域"]/ul/li')
    # 打印一下li标签个数
    # print(len(li_list))
    # 遍历li_list列表取到某一个商品的对象标签
    for li in li_list:
        # 标题
        title = li.xpath('.//a[@class="pic"]/@title')
        title = ''.join(title)
        # 商品链接
        goods_url = 'https:' + li.xpath('.//a[@class="pic"]/@href')[0]
        # 价格
        price = li.xpath('.//p[@class="price"]/span[@class="price_n"]/text()')[0]
        print(price)
        # 定价
        pre_price = li.xpath('.//p[@class="price"]/span[@class="price_r"]/text()')[0]
        # 图片链接
        img_url = 'https:' + li.xpath('.//a[@class="pic"]/img/@src')[0]
        print({'页码': page, '标题': title, '价格': price, '定价': pre_price, '商品链接': goods_url,
               '图片链接': img_url})
        data_list.append(
            {'页码': page, '标题': title, '价格': price, '定价': pre_price, '商品链接': goods_url,
             '图片链接': img_url})

def to_excel(data_list):
    """写入Excel"""
    df = pd.DataFrame(data_list)
    df.drop_duplicates()  # 删除重复数据
    df.to_excel('当当采集数据集.xlsx')
def main():
    # 1. 设置爬取的关键词和页数
    keyword = '手机'
    page_num = 1  # 爬取的页数
    data_list = []  # 空列表用于存储数据
    for page in range(1, page_num + 1):
        url = f'https://search.dangdang.com/?key={keyword}&act=input&page_index={page}'
        print(url)
        # 2. 获取指定页的网页源码
        html_str = get_html_str(url)
        # print(html_str)
        # 3. 提取数据
        get_data(html_str, page, data_list)
        time.sleep(1)
    # 4. 写入Excel
    to_excel(data_list)
if __name__ == '__main__':
    main()

将cookie、主机名、账号和密码跳入对应位置即可运行。运行结果如下:

打开excel文档,即可看到抓取到的数据。

总结

        通过上面的实战,我们可以看到代理服务可以大大提高爬虫的匿名性和效率。亮数据家的代理可以满足这两点需求。

        对开发者而言,亮数据代理以其简单易用的特性,大幅降低了技术门槛。 开发者可以快速上手,无需深入了解代理服务的底层技术细节,即可实现高效的数据抓取。这不仅加快了开发进程,也使得开发者能够将更多精力投入到数据分析和业务逻辑的构建上。

        对于采购者,亮数据代理提供的价格实惠和套餐灵活,满足了不同规模和需求的采购预算。 用户可以根据自己的实际需求选择合适的套餐,无论是初创企业还是大型机构,都能找到符合自身预算的解决方案。对项目经理来说,亮数据代理的高效数据质量保障,确保了爬取过程的稳定性和数据的准确性。 这不仅提升了项目的整体执行效率,也保障了数据分析结果的可靠性,为决策提供了坚实的数据支撑。

        对于企业老板,安全合规是他们最关心的问题之一, 亮数据代理严格遵守数据采集的法律法规,确保了企业在使用过程中的合规性,降低了潜在的法律风险。

        综上所述,亮数据代理产品以其多维度的优势,为电商平台爬虫的实现提供了强有力的支持。无论是技术实现的便捷性,还是成本控制的灵活性,或是数据质量的高效性,以及整体操作的安全性,亮数据代理都是企业和个人在数据采集领域的理想选择。随着技术的不断进步和市场需求的日益增长,我们可以预见,代理服务将在电商数据采集领域扮演越来越重要的角色

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/760994.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于人脸68特征点识别的美颜算法(一) 大眼算法 C++

1、加载一张原图&#xff0c;并识别人脸的68个特征点 cv::Mat img cv::imread("5.jpg");// 人脸68特征点的识别函数vector<Point2f> points_vec dectectFace68(img);// 大眼效果函数Mat dst0 on_BigEye(800, img, points_vec);2、函数 vector<Point2f&g…

使用Perplexity打造产品的27种方式

ChatGPT和Perplexity等聊天机器人正迅速成为产品经理的首选助手。以下是一份全面的指南&#xff0c;介绍PM如何在日常工作中使用Perplexity&#xff0c;该指南基于300多份回复和30次电话后的总结。 理解并制定增长战略&#xff1a;例如&#xff0c;解释增长会计的基本原理&…

Docker的理解

Docker的理解 Docker为什么用Docker&#xff1f;1.提升系统资源利用率2.更快速的交付和部署3.高效的部署和扩容4.更简单的管理 Docker核心技术Docker镜像Docker容器Docker仓库 Docker实现原理Linux NamespaceCgroupUnion FS Docker的应用场景1.微服务架构2.持续集成3.快速部署和…

四.iOS核心动画 - 图层的视觉效果

引言 在前几篇博客中我们讨论了图层的frame,bounds,position以及让图层加载图片。但是图层事实上不仅可以显示图片&#xff0c;或者规则的矩形块&#xff0c;它还有一系列内建的特性来创建美丽优雅的页面元素。在这篇博客中我们就来探索一下CALayer的视觉效果。 视觉效果 图…

机器学习环境搭建

前言 个人笔记&#xff0c;记录框架和小问题&#xff0c;没有太详细记载。。 1、Anaconda安装 下载地址&#xff1a; Free Download | Anaconda &#xff08;慢&#xff09; ​ 国内镜像&#xff1a;https://link.csdn.net/?targethttp%3A%2F%2Fitcxy.xyz%2F241.html 下载…

五国如何实现关键基础设施保护方法的现代化

本叙述介绍了关键基础设施面临的不断演变的风险,并讨论了关键五国(澳大利亚、加拿大、新西兰、英国和美国)如何实现关键基础设施保护方法的现代化。它还确定了加强国内关键基础设施安全性和弹性的共同方法,同时认识到鉴于关键基础设施的相互关联性,国际社会需要采取合作和…

【H.264】五分钟入门H.264协议

<> 博客简介&#xff1a;Linux、rtos系统&#xff0c;arm、stm32等芯片&#xff0c;嵌入式高级工程师、面试官、架构师&#xff0c;日常技术干货、个人总结、职场经验分享   <> 公众号&#xff1a;嵌入式技术部落   <> 系列专栏&#xff1a;C/C、Linux、rt…

以现在的社会形势走向,选什么专业好?

随着高考结束&#xff0c;选专业的话题又开始变得越来越热门。因为很多学生都想知道自己更适合什么样的专业&#xff0c;如何结合未来的社会形势来选择更好的专业&#xff0c;这的确是一个很考验能力的问题&#xff0c;因为有太多人曾经为了选择专业而纠结过。 高考志愿填报选…

基于多源数据的密码攻防领域知识图谱构建

源自&#xff1a; 信息安全与通信保密杂志社 作者&#xff1a;曹增辉 , 郭渊博 , 黄慧敏 摘 要 提高网络空间安全的密码攻防能力&#xff0c;需要形成可表示、可共享、可分析的领域知识模式和知识库。利用自顶向下的构建方法&#xff0c;并通过本体构建方法梳理密码攻防领域…

Nginx 配置文件

Nginx的配置文件的组成部分&#xff1a; 主配置文件&#xff1a;nginx.conf子配置文件&#xff1a;include conf.d/*.conf 全局配置 nginx 有多种模块 核心模块&#xff1a;是 Nginx 服务器正常运行必不可少的模块&#xff0c;提供错误日志记录 、配置文件解析 、事件驱动机…

Android Studio 2023版本切换DNK版本

选择自己需要的版本下载 根目录下的配置路劲注意切换 build.gradle文件下的ndkVersion也要配好对应版本

现代信息检索笔记(二)——布尔检索

目录 信息检索概述 IR vs数据库: 结构化vs 非结构化数据 结构化数据 非结构化数据 半结构化数据 传统信息检索VS现代信息检索 布尔检索 倒排索引 一个例子 建立词项&#xff08;可以是字、词、短语、一句话&#xff09;-文档的关联矩阵。 关联向量 检索效果的评价 …

使用Visual Studio Code记笔记

因为学习需要&#xff0c;记笔记是很有必要的&#xff0c;平常发CSDN&#xff08;都让CSDN是很棒的哈&#xff09;&#xff0c;后来使用VS Code的时候发现了很多插件&#xff0c;觉得做笔记还是相对不错的&#xff0c;主要用到的还是Markdown 主要设计的插件包括&#xff1a; …

第3章:数据结构

树 对稀疏矩阵的压缩方法有三种&#xff1a; 1、三元组顺序表 2、行逻辑连接的顺序表 3、十字链表 同义词才会占用同个位置&#xff0c;从而需要进行多次比较。这些关键字的第一个可以不是e的同义词&#xff0c;可以是排在e之前的关键字正好占了那个位置。 Dijkstra算法主要特点…

MySQL 高级SQL高级语句(二)

一.CREATE VIEW 视图 可以被当作是虚拟表或存储查询。 视图跟表格的不同是&#xff0c;表格中有实际储存数据记录&#xff0c;而视图是建立在表格之上的一个架构&#xff0c;它本身并不实际储存数据记录。 临时表在用户退出或同数据库的连接断开后就自动消失了&#xff0c;而…

javassmmysql 宣和酒店点餐系统37378-计算机毕业设计项目选题推荐(附源码)

目 录 摘要 1 绪论 1.1研究背景 1.2目的 1.3ssm框架介绍 1.3论文结构与章节安排 2 宣和酒店点餐系统系统分析 2.1 可行性分析 2.2 系统流程分析 2.2.1 数据流程 3.3.2 业务流程 2.3 系统功能分析 2.3.1 功能性分析 2.3.2 非功能性分析 2.4 系统用例分析 2.5本章…

Pascal 函数入门示例,及其汇编语言分析

1&#xff0c; Pascal 函数的定义格式 pascal 函数的定义语法格式: FUNCTION 函数名(形式参数表):函数类型; VAR 函数的变量说明; BEGIN 函数体; END; 2&#xff0c;Pascal 函数定义调用示例 order_self.pas 代码&#xff1a; PROGRAM example01;va…

黑龙江等保测评科普

黑龙江的等保测评&#xff0c;即信息安全等级保护测评&#xff0c;是中国网络安全法框架下的一项重要制度&#xff0c;旨在提升信息系统安全水平&#xff0c;保护关键信息基础设施免受威胁。下面是对黑龙江等保测评流程和要求的科普&#xff1a; 1. 等保测评概念 定义&#xff…

Linux中定位JVM问题常用命令

查询Java进程ID #ps axu | grep java #ps elf | grep java查看机器负载及CPU信息 #top -p 1(进程ID) #top (查看所有进程)获取CPU飙升线程堆栈 1. top -c 找到CPU飙升进程ID&#xff1b; 2. top -Hbp 9702(替换成进程ID) 找到CPU飙升线程ID&#xff1b; 3. $ printf &quo…

操作系统精选题(三)(简答题、概念题)

&#x1f308; 个人主页&#xff1a;十二月的猫-CSDN博客 &#x1f525; 系列专栏&#xff1a; &#x1f3c0;操作系统 &#x1f4aa;&#x1f3fb; 十二月的寒冬阻挡不了春天的脚步&#xff0c;十二点的黑夜遮蔽不住黎明的曙光 目录 前言 简答题 一、对 CPU、内存、外设并…