各维度卷积神经网络内容收录

各维度卷积神经网络内容收录

卷积神经网络(CNN),通常是指用于图像分类的2D CNN。但是,现实世界中还使用了其他两种类型的卷积神经网络,即1D CNN和3D CNN。

  • 在1D CNN中,内核沿1个方向移动。1D CNN的输入和输出数据是2维的。主要用于NLP领域,时间序列数据。

image-20240531133156799

  • 在2D CNN中,内核沿2个方向移动。2D CNN的输入和输出数据是3维的。主要用于CV领域,图像数据(在视频的处理中,是对每一帧图像分别利用CNN来进行识别,没有考虑时间维度的信息)。

  • 在3D CNN中,内核在3个方向上移动。3D CNN的输入和输出数据是4维的。通常用于3D 图像数据(MRI,CT扫描)。

    气象数据,譬如温度(time,level,lat,lon),既具有时间维又有空间维,那用1D还是2D呢,有的神经网络使用1D CNN,有的2D CNN

    因为是时间序列,RNN序列结构的网络更适合,用1D CNN还是2D CNN, 关键在于:通过数据预处理,将数据处理成适合于1D CNN还是2D

    CNN。此外,气象数据,其有多个时间序列的子特征,因此建议用2D CNN 。

    卷积中:

    维度是指特征矩阵的channel数,例如7x7x256,其深度是256

    通过一个1x1,卷积核个数为64的Conv层,其高和宽保持不变,channel变为64

    所以,降维和升维指的是特征矩阵channel数的降低和增加

    池化中:

    降维是指特征图尺寸的减小,如4x4减小为2x2

    image-20240625155622089

    维度包含多种含义,例如在卷积层中,每一层都可以识别一些信息,越往后的信息就叫高维信息

一维CNN | Conv1D

Conv1D广泛应用于感官数据,加速度计 数据就是其中之一。即在Conv1D中,内核沿一维滑动。考虑哪种类型的数据仅需要内核在一个维度上滑动并具有空间特性?时间序列数据,让我们看以下数据。

image-20240530222115760

来自 加速度计 的序列数据

该数据是从人戴在手臂上的 加速度计 中收集的,数据表示XYZ三个轴的加速度。一维CNN可以根据 加速度计 数据执行活动识别任务,例如人的身姿,行走,跳跃等。

此数据有2个维度:第一维是时间步长,第二维是XYZ轴上的加速度值。

下图说明了内核如何在 加速度计 数据上移动,每行代表某个轴的时间序列加速度,内核只能沿时间轴一维移动。

image-20240530222752400

内核在 加速度计 上滑动

# Keras中的Conv1D层
import keras

from keras.layers import Conv1D

model = keras.models.Sequential()

model.add(Conv1D(1, kernel_size=5, input_shape = (120, 3)))

model.summary()

参数input_shape(120,3)表示120个时间步,每个时间步中有3个数据点。这3个数据点是XYZ轴的加速度,参数kernel_size为5,表示内核的宽

度,内核的高度将与每个时间步中的数据点数相同。同样,一维CNN也可用于音频和文本数据因为我们还可以将声音和文本表示为时间序列数据。

请参考下面的图片,文本数据作为时间序列

image-20240530223146803

二维CNN | Conv2D

在Lenet-5架构中首次引入的标准卷积神经网络,其Conv2D通常用于图像数据,之所以称其为2维CNN,是因为内核在数据上沿2维滑动

image-20240530221022742

内核在图像上滑动

使用CNN的整体优势在于,它可以使用其内核从数据中提取空间特征,而其他网络则无法做到。

例如:CNN可以检测图像中的边缘,颜色分布等,这使得CNN网络在图像分类和包含空间属性的其他类似数据中非常强大

# 以下是在keras中添加Conv2D图层的代码。

import keras

from keras.layers import Conv2D

model = keras.models.Sequential()

model.add(Conv2D(1, kernel_size=(3,3), input_shape = (128, 128, 3)))

model.summary()

参数input_shape(128、128、3)表示图像的(高度,宽度,深度)。参数kernel_size(3,3)表示内核的(高度,宽度),并且内核深度将与图像的深度相同。

三维CNN | Conv3D

在Conv3D中,内核按3个维度滑动,让我们再考虑一下哪种数据类型需要内核在3维上移动?Conv3D主要用于3D图像数据,例如磁共振成像(MRI)数据,MRI数据被广泛用于检查大脑,脊髓,内部器官等。甲计算机断层扫描(CT)扫描也是三维数据,这是通过组合从身体周围的不同角度拍摄的一系列X射线图像创建的一个例子,我们可以使用Conv3D对该医学数据进行分类或从中提取特征。

image-20240530223438137

内核在3D数据上滑动

# 以下是在keras中添加Conv3D层的代码。
import keras

from keras.layers import Conv3D

model = keras.models.Sequential()

model.add(Conv3D(1, kernel_size=(3,3,3), input_shape = (128, 128, 128, 3)))
         
model.summary()

这里参数Input_shape(128,128,128,3)有4个维度,3D图像是4维数据,其中第四维代表颜色通道的数量,就像平面2D图像具有3维一样,其中3维代表色彩通道。参数kernel_size(3,3,3)表示内核的(高度,宽度,深度),并且内核的第4维与颜色通道相同。

了解更多知识请戳下:

@Author:懒羊羊

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/759808.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

100张linux C/C++工程师面试高质量图

文章目录 杂项BIOSlinux开机启动流程内核启动流程网络编程网络编程流程tcp状态机三次握手四次断开reactor模型proactor模型select原理poll原理epoll原理文件系统虚拟文件系统文件系统调用阻塞IO非阻塞IO异步IO同步阻塞同步非阻塞IO多路复用进程管理进程状态程序加载内存管理MMU…

ArtTS系统能力-通知的学习(3.1)

上篇回顾: ArtTS语言基础类库-容器类库内容的学习(2.10.2) 本篇内容: ArtTS系统能力-通知的学习(3.1) 一、 知识储备 1. 基础类型通知 按内容分成四类: 类型描述NOTIFICATION_CONTENT_BASIC_TEXT普通文…

基于STM32的智能农业环境监控系统

目录 引言环境准备智能农业环境监控系统基础代码实现:实现智能农业环境监控系统 4.1 数据采集模块4.2 数据处理与分析4.3 控制系统实现4.4 用户界面与数据可视化应用场景:农业环境管理与优化问题解决方案与优化收尾与总结 1. 引言 智能农业环境监控系…

Linux rpm与yum

一、rpm包管理 rpm用于互联网下载包的打包及安装工具,它包含在某些Linux分发版中。它生成具有.RPM扩展名的文件。RPM是RedHat Package Manager (RedHat软件包管理工具)的缩写,类似windows的setup.exe,这一文件格式名称虽然打上了R…

技术打包 催化剂浸渍制作方法设备

网盘 https://pan.baidu.com/s/1Bybbyy5qEA2uTUlaELmWwg?pwdepdk 改性加氢处理催化剂载体、催化剂及其制备方法和应用.pdf 水滑石基催化剂在高浓度糖转化到1,2-丙二醇中的应用.pdf 海泡石负载铁锰双金属催化剂及其制备方法和应用.pdf 甘油氢解催化剂及其制备方法和应用.pdf 用…

LeetCode-Leetcode 1120:子树的最大平均值

LeetCode-Leetcode 1120:子树的最大平均值 题目描述:解题思路一:递归解题思路二:0解题思路三:0 题目描述: 给你一棵二叉树的根节点 root,找出这棵树的 每一棵 子树的 平均值 中的 最大 值。 子…

Redis 7.x 系列【10】数据类型之有序集合(ZSet)

有道无术,术尚可求,有术无道,止于术。 本系列Redis 版本 7.2.5 源码地址:https://gitee.com/pearl-organization/study-redis-demo 文章目录 1. 概述2. 常用命令2.1 ZADD2.2 ZCARD2.3 ZSCORE2.4 ZRANGE2.5 ZREVRANGE2.6 ZRANK2.7…

ssm网上旅游信息管理系统-计算机毕业设计源码06975

目 录 摘要 1 绪论 1.1 研究背景 1.2 研究意义 1.3论文结构与章节安排 2 系统分析 2.1 可行性分析 2.2 系统流程分析 2.2.1 数据新增流程 2.2.2 数据删除流程 2.3 系统功能分析 2.3.1 功能性分析 2.3.2 非功能性分析 2.4 系统用例分析 2.5本章小结 3 系统总体设…

【课程总结】Day13(上):使用YOLO进行目标检测

前言 在上一章《【课程总结】Day11(下):YOLO的入门使用》的学习中,我们通过YOLO实现了对图片的分类任务。本章的学习内容,将以目标检测为切入口,了解目标检测流程,包括:数据标准、模…

Spring Boot集成jasypt快速入门Demo

1.什么是Jasypt? Jasypt(Java Simplified Encryption)是一个专注于简化Java加密操作的工具。 它提供了一种简单而强大的方式来处理数据的加密和解密,使开发者能够轻松地保护应用程序中的敏感信息,如数据库密码、API密…

使用NFS网关功能将HDFS挂载到本地系统

HDFS安装教程 HDFS安装教程http://t.csdnimg.cn/2ziFd 使用NFS网关功能将HDFS挂载到本地系统 简介 HDFS提供了基于NFS(Network File System)的插件,可以对外提供NFS网关,供其它系统挂载使用。 NFS 网关支持 NFSv3,并…

DDD学习笔记四

领域模型的构建 基础领域模型的基本组成有名称、属性、关联、职责、事件和异常 发掘领域概念3种策略: 1)学习已有系统,重用已有模型 2)使用分类标签。分类标签来源于领域,需要我们研究一些资料并做一些提炼。从采用5W…

聚焦 HW 行动,构筑重保邮件安全防线

随着信息技术的飞速发展,网络安全已成为国家安全的重要组成部分。HW行动作为国家级网络安全演练,通过模拟实战攻防,检验和提升国家关键信息基础设施的防护能力。 CACTER凭借多年HW防护经验,提供全面的邮件安全防护体系&#xff0…

汽车电子行业知识:什么是车载智能座舱

1.什么是车载智能座舱 车载智能座舱是指搭载在汽车内部的一种智能系统,它集成了各种功能和技术,旨在提升驾驶体验、增加安全性和提供更多的便利。这种系统可以包括诸如智能驾驶辅助、信息娱乐、智能语音控制、车内环境控制、车辆健康监测等功能。通过车…

13_旷视轻量化网络--ShuffleNet V2

回顾一下ShuffleNetV1:08_旷视轻量化网络--ShuffleNet V1-CSDN博客 1.1 简介 ShuffleNet V2是在2018年由旷视科技的研究团队提出的一种深度学习模型,主要用于图像分类和目标检测等计算机视觉任务。它是ShuffleNet V1的后续版本,重点在于提供更高效的模…

Java知识点整理 12 — 前端 Ant Design Pro 初始化模板使用

一. 项目初始化 Ant Design Pro 是基于 Ant Design 和 umi 封装的一整套企业级中后台前端设计框架,致力于在设计规范和基本组件的基础上,继续向上构建,提炼出典型模板或配套设计资源,进一步提升企业级中后台产品设计研发过程中的…

【Qt知识】window frame 对窗口坐标的影响

在Qt中,窗口框架(Window Frame)对Widget的尺寸计算和坐标定位有着直接的影响,这主要是因为窗口框架本身占据了一定的空间,包括标题栏、最小化/最大化/关闭按钮以及边框。这部分额外的空间在不同的应用场景下需要被考虑…

Android Graphics 显示系统 - BufferQueue的状态监测

“ BufferQueue作为连接生产者和消费者的桥梁,时刻掌握队列中每一块Buffer的状态,对于解决一些卡死卡顿问题很有帮助,辨别是否有生产者或消费者长期持有大量Buffer不放导致运行不畅的情况。” 01 — 前言 在Android系统中,应用U…

C#进阶-ASP.NET WebForms调用ASMX的WebService接口

ASMX 文件在 ASP.NET WebForms 中提供了创建 Web 服务的便捷方式,通过公开 Web 方法,允许远程客户端调用这些方法并获取数据。本文介绍了 ASMX 文件的基本功能、如何定义 WebService 接口、通过 HTTP 和 SOAP 请求调用 WebService 接口,以及使…

【ESP32】打造全网最强esp-idf基础教程——14.VFS与SPIFFS文件系统

VFS与SPIFFS文件系统 这几天忙着搬砖,差点没时间更新博客了,所谓一日未脱贫,打工不能停,搬砖不狠,明天地位不稳呀。 不多说了,且看以下内容吧~ 一、VFS虚拟文件系统 先来看下文件系统的定义&#x…