基于线调频小波变换的一维时间序列时频分析方法(MATLAB)

在机械故障诊断领域,振动信号的处理常采用以快速傅立叶变换为基础的相关分析、幅值分析、频谱分析等时域和频域分析方法。但经典的FFT存在固有缺点,即它虽然在频域范围内是完全局部化的,但是它不包含任何时域信息,因而不适于分析非平稳信号。近年来涌现的各种时频分析方法(短时傅立叶变换、Wigner-Ville分布、Cohen类时频分布、小波分析等)较好地解决了非平稳信号分析的问题 。小波分析又是其中运用最为成功的一种方法,具有良好的时频局部性、多尺度性和“数学显微”特性。但这种方法只适应于频率范围很窄的信号,不能满足设备振动信号的分析需要。

线调频小波变换源于19世纪20年代的光学研究,但将其作为信号处理的数学工具来研究,则只是最近几年的事。许多学者研究过采用基函数来表示和逼近信号的思想,用一系列的线性调频信号来逼近自然界中的各种信号,并提出了各种寻找与待分析信号最匹配的基函数的优化算法。线调频小波变换属于时间-频率-尺度变换,利用它作信号的谱估计,不仅具有小波变换谱估计方法高频域分辨率的优点,而且可以根据需要自由地选择尺度参数,谱估计值更准确有效,对非平稳信号的分析功能更加强大。线调频小波变换使用的时频分析网格除了时移、频移、尺度变化外,还有斜方向的拉伸与旋转变化,这些复杂形状的网格所提供的分析功能是短时傅立叶变换、小波变换等各种方法所无法企及的。

鉴于此,采用一种线调频小波变换对非平稳信号进行时频分析,运行环境为MATLAB R2018A。

for elec = 1:nChan  
    dataY = squeeze(data(elec,:)); % one sensor of data
    X=fft(dataY, Ly2);              % Fast Fourier transform
    Y=X.*H;                         % multiply power spectra (frequency-domain convolution)
    convDat=ifft(Y, Ly2, 2);        % Inverse fast Fourier transform
    convDat=convDat(:,1:1:Ly);      % Take just the first N elements
    if t_even==1
        wavDat(elec,:,:) = convDat(:,half_of_wavelet_size:end-half_of_wavelet_size); %remove half of wavelet from either side
    else
        wavDat(elec,:,:) = convDat(:,half_of_wavelet_size+1:end-half_of_wavelet_size); %remove half of wavelet from either side
    end
    %update progress bar
    prog=100*(elec/size(data,1));
    fprintf(1,'\b\b\b\b%3.0f%%',prog);
end
fprintf(1,'\n');

%format
tfRes.power = squeeze(reshape(abs(wavDat).^2,nChan,numel(freqs),nTimes,nTrls)); %power, reshape back
tfRes.phase = squeeze(reshape(angle(wavDat),nChan,numel(freqs),nTimes,nTrls)); %phase, reshape back
tfRes.freqs=freqs;
tfRes.times=0:1/Fs:((1/Fs)*nTimes)-(1/Fs);
tfRes.nsensor=nChan;
tfRes.ntrls=nTrls;
tfRes.Fs=Fs;
tfRes.cycles = cycles;
tfRes.method='wavelet';

完整代码:https://mbd.pub/o/bread/ZJqTk5Zs

tfRes.scale = 'linear';

  • 擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/757442.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

ros1仿真导航机器人 hector_mapping gmapping

仅为学习记录和一些自己的思考&#xff0c;不具有参考意义。 1 hector_mapping 建图过程 &#xff08;1&#xff09;gazebo仿真 roslaunch why_simulation why_slam.launch <launch><!-- We resume the logic in empty_world.launch, changing only the name of t…

c++习题04-忙碌的工人

目录 一&#xff0c;问题 二&#xff0c;思路 1&#xff0c;图形 2&#xff0c;分析 3&#xff0c;伪代码 三&#xff0c;代码 一&#xff0c;问题 二&#xff0c;思路 1&#xff0c;图形 根据题目&#xff0c;绘制出来的图形如下&#x1f447; 之后再绘制甲经过楼梯…

面试-J.U.C包的梳理

1.J.U.C包的梳理 Java.Util.Concurrent包简称JUC (1)JUC整体架构图 (2)分析 Executor&#xff1a;线程执行器&#xff0c;任务执行和调度的框架。Tools下存在executor相关的executors类&#xff0c;用于创建executorservice&#xff0c;scheduleexecutorservice&#xff0c;…

解决json日期格式问题

解决json日期格式问题 1.json默认输出时间格式 RequestMapping("/json3") public String json3() throws JsonProcessingException {ObjectMapper mapper new ObjectMapper();//创建时间一个对象&#xff0c;java.util.DateDate date new Date();//将我们的对象解…

clion ctrl+左键只能跳转到虚函数的声明处

右击函数 -> GOTO -> Definition 这样不够便捷&#xff0c;但是我没有找到更好的办法 可能是因为该函数是虚函数的重写&#xff0c;clion 无法识别出该函数是虚函数的哪个重写版&#xff0c;只能跳转到唯一的虚函数位置

<电力行业> - 《第7课:发电》

1 发电的原理 电力生产的发电环节是利用电能生产设备将各种一次能源或其他形式的能转换为电能。生产电能的主要方式有火力发电、水力发电、核能发电、地热发电、风力发电、太阳能发电、潮汐能发电、生物智能发电和燃料电池发电等。 除太阳能发电的光伏电池技术和燃料电池发电…

【C++】哈希表 --- 闭散列版本的实现

在无人问津日子里 正是登峰造极的好时机 ——《人民日报》 哈希表 --- 闭散列版本的实现 1 C中的哈希表2 哈希表底层2.1 功能2.1 哈希冲突2.3 开散列与闭散列 3 闭散列版本的实现3.1 框架搭建3.2 仿函数设计3.3 插入函数3.4 查找函数3.5 删除函数 Thanks♪(&#xff65;ω&a…

# [0628] Task04 DQN 算法及进阶

easy-rl PDF版本 笔记整理 P6 - P8 joyrl 比对 补充 P7 - P8 相关 代码 整理 待整理 &#xff01;&#xff01; 最新版PDF下载 地址&#xff1a;https://github.com/datawhalechina/easy-rl/releases 国内地址(推荐国内读者使用)&#xff1a; 链接: https://pan.baidu.com/s/1i…

vue3 window.location 获取正在访问的地址,也可以通过useRoute来获取相关信息。

1、一般我们在开发的vue3项目的时候&#xff0c;地址是这样&#xff1a;http://192.168.1.101:3100/#/login 然后我们在布署完成以后一般是这样https://xxx.yyyyy.com/uusys/#/login 其实xxx可以是www&#xff0c;也可以是一个二级域名 yyyyy.com是域名&#xff0c;uusys一般…

Kafka~消息发送过程与ISR机制了解

消息发送过程 使用Kafka发送消息时&#xff0c;一般有两种方式分别是&#xff1a; 同步发送异步发送 同步发送时&#xff0c;可以在发送消息后&#xff0c;通过get方法等待消息结果&#xff0c;这种情况能够准确的拿到消息最终的发送结果&#xff0c;要么是成功、要么是失败…

前端路由管理

前端路由管理简介&#xff1a; 当谈到前端路由管理时&#xff0c;通常指的是在单页面应用程序&#xff08;SPA&#xff09;中管理页面间导航和URL的过程。路由管理器是一个工具&#xff0c;可以帮助前端开发者定义应用程序的不同视图之间的关系&#xff0c;同时能够响应URL的改…

Attention (注意力机制)

1. 背景&#xff1a; 字面的意思&#xff1a;给你一些东西(看见一个美女:).....)&#xff0c;你会注意什么&#xff1f; 大数据的时代下&#xff0c;有太多的数据&#xff0c;我们又该如何选择重要的数据呢&#xff1f; Attention 诞生了&#xff0c;但是又该如何去做呢(i.e., …

springboot在线考试 LW +PPT+源码+讲解

第三章 系统分析 3.1 可行性分析 一个完整的系统&#xff0c;可行性分析是必须要有的&#xff0c;因为他关系到系统生存问题&#xff0c;对开发的意义进行分析&#xff0c;能否通过本系统来补充线下在线考试管理模式中的缺限&#xff0c;去解决其中的不足等&#xff0c;通过对…

[OtterCTF 2018]Play Time

还是这个程序 。。要找到游戏名字查看 进程 psscan pstree pslist 0x000000007d686b30 Rick And Morty 3820 2728 0x000000000b59a000 2018-08-04 19:32:55 UTC0000 0x000000007d7cb740 LunarMS.exe 708 2728 0x00000000731cb000 2018-08-04 19:27:39 UTC0000…

嵌入式Linux系统编程 — 4.7 regcomp、regexec、regfree正则表达式函数

目录 1 为什么需要正则表达式 2 正则表达式简介 3 正则表达式规则 4 regcomp、regexec、regfree函数 4.1 函数介绍 4.2 URL格式案例 1 为什么需要正则表达式 在许多的应用程序当中&#xff0c; 有这样的应用场景&#xff1a; 给定一个字符串&#xff0c;检查该字符串是否…

Spring学习01-[Spring实现IOC的几种方式]

Spring实现IOC的几种方式 基于xml实现Spring的IOC基于注解实现Spring的IOC基于JavaConfig实现的Spring的IOC基于SpringBoot实现Spring的IOC 基于xml实现Spring的IOC 引入spring核心依赖 <!--spring核心容器--><dependency><groupId>org.springframework<…

14 卡尔曼滤波及代码实现

文章目录 14 卡尔曼滤波及代码实现14.0 基本概念14.1 公式推导14.2 代码实现 14 卡尔曼滤波及代码实现 14.0 基本概念 卡尔曼滤波是一种利用线性系统状态方程&#xff0c;通过系统输入输出观测数据&#xff0c;对系统状态进行最优估计的算法。由于观测数据包括系统中的噪声和…

【智能制造-4】机器人控制器

机器人控制器中分哪几个模块&#xff1f; 机器人控制器通常由以下几个主要模块组成: 运动控制模块: 负责机器人各轴电机的位置、速度、加速度等控制 实现机器人末端执行器的精确定位和运动控制传感器接口模块: 负责机器人各种传感器信号的采集和处理 为运动控制、环境感知等提…

实用的vueuseHooks,提高编码效率

文章目录 写在前面vueuse 官网安装HooksuseStorage [地址](https://vueuse.org/core/useStorage/)传统方法数据持久化 举例子传统持久化的弊端useStorage 数据持久化 举例子使用useStorage 更改存储数据使用useStorage 删除存储数据 useScriptTag [地址](https://vueuse.org/co…

Detailed Steps for Troubleshooting ORA-00600 [kdsgrp1] (文档 ID 1492150.1)

Detailed Steps for Troubleshooting ORA-00600 [kdsgrp1] (文档 ID 1492150.1)​编辑转到底部 In this Document Purpose Troubleshooting Steps References APPLIES TO: Oracle Database - Enterprise Edition Oracle Database Cloud Schema Service - Version N/A and lat…