flink 处理函数和流转换

目录

处理函数分类

概览介绍

KeydProcessFunction和ProcessFunction

定时器TimeService

窗口处理函数

 多流转换

分流-侧输出流

合流

联合(Uniion)

连接(connect)

 广播连接流(BroadcatConnectedStream)

基于时间的合流 -双流联结

窗口连接(windowjoin)

间隔联结(Interval join)

窗口同组联结(window CoGroup)


处理函数分类

窗口 | Apache Flink

处理函数分8种;datastream调用keyby()后得到keyedStream,进而调用window()得到WindowedStream,对于不同的流都可以调用process方法进行自定处理;这是传入的函数都叫处理函数;

概览介绍

flink提供8种不同的处理函数;

窗口和流都可以使用

1.ProcessFunction 是最基本的处理函数,基于DataStream直接调用process()时作为参数传入;

2.KeydProcessFunction:是对流进行分区后的处理函数,基于KeyedStream调用process()时作为参数传入。只有该方法支持定时器功能(onTime);

窗口函数,只有窗口可以使用

3.ProcessWindowFunction:是开窗之后的处理函数,也是全窗口函数的代表,基于windowedStream调用process()时作为参数传入;

4.ProcessAllWindowFunction:开窗后处理函数,基于allWindowedStream的process()时作为参数传入。

连接函数流join使用

5.CoProcessFunction:是合并两条留之后的处理函数,基于ConnectedStreams调用process()时作为参数传入;

窗口的join使用

6.ProcessJoinFunction:是间隔连接两条流字之后的处理函数,基于IntervalJOined调用process()时作为参数传入;

广播状态

7.BroadcastProcessFunction:是广播连接流处理函数,基于BroadcastConnectedStream调用process()时作为参数传入,这里BroadcastConnectedStream是一个未做keyby处理的普通DataStream,与一个广播流(BroadcastStream)连接之后的产物;

8.KeyedBroadcastFunction:是按键分区的广播连接流处理函数,同样基于BroadConnectedStream调用process()时作为参数传入;与BroadcastProcessFunction不同的是是的广播流是keyedStream,与一个广播流(BroadcastStream)连接之后的产物;

KeydProcessFunction和ProcessFunction

我们在看源码的时候看到ProcessFunction 和KeydProcessFunction结构一样,都有两个接口,一个必须实现的processElement()抽象方法,一个非抽象方法onTimer()。差别在上下文Context中KeydProcessFunction多一个获取当前分区key的方法 getCurrentKey。当使用ProcessFunction使用定时器时程序运行会报错,提示定时器只支持keyStream使用;

    stream.process(new ProcessFunction< Event, String>() {

                    @Override
                    public void processElement(Event value, ProcessFunction<Event, String>.Context ctx, Collector<String> out) throws Exception {
                        Long currTs = ctx.timerService().currentProcessingTime();
                        out.collect("数据到达,到达时间:" + new Timestamp(currTs));
                        // 注册一个10秒后的定时器
                        ctx.timerService().registerProcessingTimeTimer(currTs + 10 * 1000L);
                    }

                    @Override
                    public void onTimer(long timestamp, ProcessFunction<Event, String>.OnTimerContext ctx, Collector<String> out) throws Exception {
                        out.collect("定时器触发,触发时间:" + new Timestamp(timestamp));
                    }
                })

程序运行后报错
Caused by: java.lang.UnsupportedOperationException: Setting timers is only supported on a keyed streams.
	at org.apache.flink.streaming.api.operators.ProcessOperator$ContextImpl.registerProcessingTimeTimer(ProcessOperator.java:118)
	at com.atguigu.chapter07.ProcessingTimeTimerTest$1.processElement(ProcessingTimeTimerTest.java:55)
	at com.atguigu.chapter07.ProcessingTimeTimerTest$1.processElement(ProcessingTimeTimerTest.java:47)
	at org.apache.flink.streaming.api.operators.ProcessOperator.processElement(ProcessOperator.java:66)
	at org.apache.flink.streaming.runtime.tasks.CopyingChainingOutput.pushToOperator(CopyingChainingOutput.java:71)
	at org.apache.flink.streaming.runtime.tasks.CopyingChainingOutput.collect(CopyingChainingOutput.java:46)
	at org.apache.flink.streaming.runtime.tasks.CopyingChainingOutput.collect(CopyingChainingOutput.java:26)
	at org.apache.flink.streaming.api.operators.CountingOutput.collect(CountingOutput.java:50)
	at org.apache.flink.streaming.api.operators.CountingOutput.collect(CountingOutput.java:28)
	at org.apache.flink.streaming.api.operators.StreamSourceContexts$ManualWatermarkContext.processAndCollect(StreamSourceContexts.java:317)
	at org.apache.flink.streaming.api.operators.StreamSourceContexts$WatermarkContext.collect(StreamSourceContexts.java:411)
	at com.atguigu.chapter05.ClickSource.run(ClickSource.java:26)
	at org.apache.flink.streaming.api.operators.StreamSource.run(StreamSource.java:110)
	at org.apache.flink.streaming.api.operators.StreamSource.run(StreamSource.java:66)
	at org.apache.flink.streaming.runtime.tasks.SourceStreamTask$LegacySourceFunctionThread.run(SourceStreamTask.java:269)

定时器TimeService

TimeService中有六个方法,可以分为基于处理时间和基于事件时间的方法两大类种;时间精度为毫秒;

获取当前处理时间
long currentProcessingTime();
获取当前水印时间
long currentWatermark();
注册处理时间为定时器
void registerProcessingTimeTimer(long time);
long coalescedTime = ((ctx.timestamp() + timeout) / 1000) * 1000;
ctx.timerService().registerProcessingTimeTimer(coalescedTime);
注册时间时间为定时器
void registerEventTimeTimer(long time);
long coalescedTime = ctx.timerService().currentWatermark() + 1;
ctx.timerService().registerEventTimeTimer(coalescedTime);
删除处理时间定时器
void deleteProcessingTimeTimer(long time);
long timestampOfTimerToStop = ...
ctx.timerService().deleteProcessingTimeTimer(timestampOfTimerToStop);
删除时间时间定时器
void deleteEventTimeTimer(long time);
long timestampOfTimerToStop = ...
ctx.timerService().deleteEventTimeTimer(timestampOfTimerToStop);

注意:另外定时器使用处理时间和时间在触发上有区别,当设置定时任务为处理时间时,即便后续没有数据写入,定时器依然可以正常触发计算,当如果设置为时间时,定时任务时间依赖水印时间线。只有当水印时间大于定时器触发时间时才会触发计算,即如果后入没有实时数据进入时,最后一个定时器一直不会触发;

窗口处理函数

ProcessWindowFunction和ProcessAllWindowFunction既是创立函数又是全窗口函数,从名称上看他更倾向于窗口函数。用法与处理函数不同。 没有ontime借口和定时器服务,一般窗口有使用窗口触发器Trigger,在作用上可以类似timeservice的作用。

源码上看:

abstract class ProcessWindowFunction[IN, OUT, KEY, W <: Window]
    extends AbstractRichFunction {

  /**
    * Evaluates the window and outputs none or several elements.
    *
    * @param key      The key for which this window is evaluated.
    * @param context  The context in which the window is being evaluated.
    * @param elements The elements in the window being evaluated.
    * @param out      A collector for emitting elements.
    * @throws Exception The function may throw exceptions to fail the program and trigger recovery.
    */
  @throws[Exception]
  def process(key: KEY, context: Context, elements: Iterable[IN], out: Collector[OUT])

// 如果有自定义状态,该方法调用清理
  @throws[Exception]
  def clear(context: Context) {}

  abstract class Context {

    def window: W

    def currentProcessingTime: Long

    def currentWatermark: Long
// 获取自定义窗口状态  对当前key,当前窗口有效
    def windowState: KeyedStateStore
// 获取自定义全局状态  对当前key的全部窗口有效
    def globalState: KeyedStateStore

    def output[X](outputTag: OutputTag[X], value: X);
  }
}
--------------用法演示------------


DataStream<Tuple2<String, Long>> input = ...;

input
  .keyBy(t -> t.f0)
  .window(TumblingEventTimeWindows.of(Time.minutes(5)))
  .process(new MyProcessWindowFunction());

/* ... */

public class MyProcessWindowFunction 
    extends ProcessWindowFunction<Tuple2<String, Long>, String, String, TimeWindow> {

  @Override
  public void process(String key, Context context, Iterable<Tuple2<String, Long>> input, Collector<String> out) {
    long count = 0;
    for (Tuple2<String, Long> in: input) {
      count++;
    }
    out.collect("Window: " + context.window() + "count: " + count);
  }
}

 多流转换

分流-侧输出流

处理函数有一个特殊功能来处理迟到数据和进行分流,侧输出流(Side Output),再使用可以通过processElement或onTimer的下文context的output()方法就可以了;

旁路输出 | Apache Flink

一下函数都可以获取

  • ProcessFunction
  • KeyedProcessFunction
  • CoProcessFunction
  • KeyedCoProcessFunction
  • ProcessWindowFunction
  • ProcessAllWindowFunction

用法示例

DataStream<Integer> input = ...;
//定义
final OutputTag<String> outputTag = new OutputTag<String>("side-output"){};

SingleOutputStreamOperator<Integer> mainDataStream = input
  .process(new ProcessFunction<Integer, Integer>() {

      @Override
      public void processElement(
          Integer value,
          Context ctx,
          Collector<Integer> out) throws Exception {
        // 发送数据到主要的输出
        out.collect(value);

        // 发送数据到旁路输出
        ctx.output(outputTag, "sideout-" + String.valueOf(value));
      }
    });

//外部获取测试给出流
DataStream<String> sideOutputStream = mainDataStream.getSideOutput(outputTag);

分流之前有split()在1.13版本中已经弃用,直接使用处理函数的侧输出流;

合流

联合(Uniion)

将多个流合成一个流,而一个流中数据类型必须是相同的,因此要求多个流的数据类型必须相同才能合并,合并后流包含所有流的元素,如果流有水位线,合流之后的水位线为最小的为准;

stream1.union(Stream2,stream3,...),

连接(connect)

connect得到的是connectedStreams,与联合有本质的不同,两个是量多流合并成一个流,数据是混在一个流中,跟一个流没什么区别,而connect合并后内部仍然各自保持自己的数据形式不变,彼此独立。因此可以处理不同类型的数据,但是只能两个流连接。如果想要得到新的DataStream,还需要自定义一个“同处理”(co-propcess)转换操作,对不同类型数据进行分别处理转换成同一种类型。

DataStream<Integer> someStream = //...
DataStream<String> otherStream = //...

ConnectedStreams<Integer, String> connectedStreams = someStream.connect(otherStream);

 coMap和coflatmap函数

connectedStreams.map(new CoMapFunction<Integer, String, Boolean>() {
    @Override
    public Boolean map1(Integer value) {
        return true;
    }

    @Override
    public Boolean map2(String value) {
        return false;
    }
});
connectedStreams.flatMap(new CoFlatMapFunction<Integer, String, String>() {

   @Override
   public void flatMap1(Integer value, Collector<String> out) {
       out.collect(value.toString());
   }

   @Override
   public void flatMap2(String value, Collector<String> out) {
       for (String word: value.split(" ")) {
         out.collect(word);
       }
   }
});

CoprocessFunction

是处理函数中的亿元,与处理函数用法相识,,keyby的key类型必须相同

        appStream.connect(thirdpartStream)
                .keyBy(data -> data.f0, data -> data.f0)
                .process(new OrderMatchResult())
                .print();


 public static class OrderMatchResult extends CoProcessFunction<Tuple3<String, String, Long>, Tuple4<String, String, String, Long>, String>{
        // 定义状态变量,用来保存已经到达的事件
        private ValueState<Tuple3<String, String, Long>> appEventState;
        private ValueState<Tuple4<String, String, String, Long>> thirdPartyEventState;

        @Override
        public void open(Configuration parameters) throws Exception {
            appEventState = getRuntimeContext().getState(
                    new ValueStateDescriptor<Tuple3<String, String, Long>>("app-event", Types.TUPLE(Types.STRING, Types.STRING, Types.LONG))
            );

            thirdPartyEventState = getRuntimeContext().getState(
                    new ValueStateDescriptor<Tuple4<String, String, String, Long>>("thirdparty-event", Types.TUPLE(Types.STRING, Types.STRING, Types.STRING,Types.LONG))
            );
        }

        @Override
        public void processElement1(Tuple3<String, String, Long> value, Context ctx, Collector<String> out) throws Exception {
            // 看另一条流中事件是否来过
            if (thirdPartyEventState.value() != null){
                out.collect("对账成功:" + value + "  " + thirdPartyEventState.value());
                // 清空状态
                thirdPartyEventState.clear();
            } else {
                // 更新状态
                appEventState.update(value);
                // 注册一个5秒后的定时器,开始等待另一条流的事件
                ctx.timerService().registerEventTimeTimer(value.f2 + 5000L);
            }
        }

        @Override
        public void processElement2(Tuple4<String, String, String, Long> value, Context ctx, Collector<String> out) throws Exception {
            if (appEventState.value() != null){
                out.collect("对账成功:" + appEventState.value() + "  " + value);
                // 清空状态
                appEventState.clear();
            } else {
                // 更新状态
                thirdPartyEventState.update(value);
                // 注册一个5秒后的定时器,开始等待另一条流的事件
                ctx.timerService().registerEventTimeTimer(value.f3 + 5000L);
            }
        }

        @Override
        public void onTimer(long timestamp, OnTimerContext ctx, Collector<String> out) throws Exception {
            // 定时器触发,判断状态,如果某个状态不为空,说明另一条流中事件没来
            if (appEventState.value() != null) {
                out.collect("对账失败:" + appEventState.value() + "  " + "第三方支付平台信息未到");
            }
            if (thirdPartyEventState.value() != null) {
                out.collect("对账失败:" + thirdPartyEventState.value() + "  " + "app信息未到");
            }
            appEventState.clear();
            thirdPartyEventState.clear();
        }
    }}
 广播连接流(BroadcatConnectedStream)

DataStream在调用connect()时传入的参数可以不是一个DataStream,而是一个广播流(BroadcastStream),这是合并两条流,得到的就是一个广播连接流(BroadcastConnectedStream),比较实用动态定义规则或配置的场景。下游算子收到广播规则后吧保存为状态。这就是广播状态。

广播状态底层是一个映射(map)结构来保存的。可以直接DataStream.broadcast()方法调用;

// 一个 map descriptor,它描述了用于存储规则名称与规则本身的 map 存储结构
MapStateDescriptor<String, Rule> ruleStateDescriptor = new MapStateDescriptor<>(
			"RulesBroadcastState",
			BasicTypeInfo.STRING_TYPE_INFO,
			TypeInformation.of(new TypeHint<Rule>() {}));
		
// 广播流,广播规则并且创建 broadcast state
BroadcastStream<Rule> ruleBroadcastStream = ruleStream
                        .broadcast(ruleStateDescriptor);

//使用
DataStream<String> output = colorPartitionedStream
                 .connect(ruleBroadcastStream)
                 .process(
                     
                     // KeyedBroadcastProcessFunction 中的类型参数表示:
                     //   1. key stream 中的 key 类型
                     //   2. 非广播流中的元素类型
                     //   3. 广播流中的元素类型
                     //   4. 结果的类型,在这里是 string
                     
                     new KeyedBroadcastProcessFunction<Color, Item, Rule, String>() {
                         // 模式匹配逻辑
                     }
                 );

为了关联一个非广播流(keyed 或者 non-keyed)与一个广播流(BroadcastStream),我们可以调用非广播流的方法 connect(),并将 BroadcastStream 当做参数传入。 这个方法的返回参数是 BroadcastConnectedStream,具有类型方法 process(),传入一个特殊的 CoProcessFunction 来书写我们的模式识别逻辑。 具体传入 process() 的是哪个类型取决于非广播流的类型:

  • 如果流是一个 keyed 流,那就是 KeyedBroadcastProcessFunction 类型;
  • 如果流是一个 non-keyed 流,那就是 BroadcastProcessFunction 类型。

BroadcastProcessFunction 和 KeyedBroadcastProcessFunction 

在传入的 BroadcastProcessFunction 或 KeyedBroadcastProcessFunction 中,我们需要实现两个方法。processBroadcastElement() 方法负责处理广播流中的元素,processElement() 负责处理非广播流中的元素。 两个子类型定义如下:

public abstract class BroadcastProcessFunction<IN1, IN2, OUT> extends BaseBroadcastProcessFunction {

    public abstract void processElement(IN1 value, ReadOnlyContext ctx, Collector<OUT> out) throws Exception;

    public abstract void processBroadcastElement(IN2 value, Context ctx, Collector<OUT> out) throws Exception;
}
public abstract class KeyedBroadcastProcessFunction<KS, IN1, IN2, OUT> {

    public abstract void processElement(IN1 value, ReadOnlyContext ctx, Collector<OUT> out) throws Exception;

    public abstract void processBroadcastElement(IN2 value, Context ctx, Collector<OUT> out) throws Exception;

    public void onTimer(long timestamp, OnTimerContext ctx, Collector<OUT> out) throws Exception;
}
基于时间的合流 -双流联结
窗口连接(windowjoin)

flink内置的join算子,join()和coGroup(),适用于窗口统计的,不用再进行自定义触发器,简化了开发逻辑;  等同于sql的inner join on 或 select * from table1  t1,table2 t2 where t1.id=t2.id 

wehre()和 equalTo()方法制定两条流中连接的key;然后通过window()开窗口,并调用apply()传入自连接窗口函数进行计算,

stream.join(otherStream)
    .where(<KeySelector>)  //stream的key
    .equalTo(<KeySelector>)  //otherStream的key
    .window(<WindowAssigner>)
    .apply(<JoinFunction>)


//案例
 stream1.join(stream2)
                .where(r -> r.f0)
                .equalTo(r -> r.f0)
                .window(TumblingEventTimeWindows.of(Time.seconds(5)))
                .apply(new JoinFunction<Tuple2<String, Long>, Tuple2<String, Long>, String>() {
                    @Override
                    public String join(Tuple2<String, Long> left, Tuple2<String, Long> right) throws Exception {
                        return left + "=>" + right;
                    }
                })
                .print();

 join function 不是真正的窗口函数,只是定义了窗口函数在调用是对匹配数据额具体处理逻辑。

@Public
@FunctionalInterface
public interface JoinFunction<IN1, IN2, OUT> extends Function, Serializable {

    /**
     * The join method, called once per joined pair of elements.
     *
     * @param first The element from first input.
     * @param second The element from second input.
     * @return The resulting element.
     * @throws Exception This method may throw exceptions. Throwing an exception will cause the
     *     operation to fail and may trigger recovery.
     */
    OUT join(IN1 first, IN2 second) throws Exception;
}

join时数据先按照key进行分组、进入对应的窗口存储,当窗口结束时,算子会先统计出窗口内两条流的数据所有组合,即做一个笛卡尔积;然后进行遍历传入joinfunction的join方法中

 出了JoinFunction,在apply方法中还可以闯入FlatJoinFunction,使用方法类似,区别是内部join实现犯法没有返回值,使用收集器来实现。

间隔联结(Interval join)

间隔联结需要设定两个时间点,对应上界(upperBound)和下届(lowerBound),对于同一条流A的任意一个元素a,开辟一段时间间隔[a.timestamp+lowerBound,a.timestamp+upperBound],即开辟以a为中心,上下届点为边界的一个闭区间,相当于窗口。对于另外一条流B中的元素b,如果时间戳b.timestamp>=a.timestamp+lowerBound and b.timestamp<=a.timestamp+upperBoundm 那么a和b就可以匹配上;

调用:

orderStream.keyBy(data -> data.f0)
        .intervalJoin(clickStream.keyBy(data -> data.user))
        .between(Time.seconds(-5), Time.seconds(10))
        .process(new ProcessJoinFunction<Tuple3<String, String, Long>, Event, String>() {
            @Override
            public void processElement(Tuple3<String, String, Long> left, Event right, Context ctx, Collector<String> out) throws Exception {
                out.collect(right + " => " + left);
            }
        })
        .print();

窗口同组联结(window CoGroup)

使用与join相同。将window的join替换成cogroup即可。与join不同是,cogroup传递的一个可以遍历的集合,没有做笛卡尔积。出了实现inner join还可以实现左外连接,右外连接,全外连接。

并且窗口联结底层也是通过同组联结实现

 stream1.coGroup(stream2)
                .where(r -> r.f0)
                .equalTo(r -> r.f0)
                .window(TumblingEventTimeWindows.of(Time.seconds(5)))
                .apply(new CoGroupFunction<Tuple2<String, Long>, Tuple2<String, Long>, String>() {
                    //与join 区别是参数非单个元素,而是遍历集合
                    @Override
                    public void coGroup(Iterable<Tuple2<String, Long>> iter1, Iterable<Tuple2<String, Long>> iter2, Collector<String> collector) throws Exception {
                        collector.collect(iter1 + "=>" + iter2);
                    }
                })
                .print();

窗口联结地城代码

        stream1
                .join(stream2)
                .where(r -> r.f0)
                .equalTo(r -> r.f0)
                .window(TumblingEventTimeWindows.of(Time.seconds(5)))
                .apply(new JoinFunction<Tuple2<String, Long>, Tuple2<String, Long>, String>() {
                    @Override
                    public String join(Tuple2<String, Long> left, Tuple2<String, Long> right) throws Exception {
                        return left + "=>" + right;
                    }
                })
                .print();

==================查看apply源码================
       public <T> DataStream<T> apply(JoinFunction<T1, T2, T> function) {
            TypeInformation<T> resultType =
                    TypeExtractor.getBinaryOperatorReturnType(
                            function,
                            JoinFunction.class,
                            0,
                            1,
                            2,
                            TypeExtractor.NO_INDEX,
                            input1.getType(),
                            input2.getType(),
                            "Join",
                            false);
                  // 继续点击apply 查看源码
            return apply(function, resultType);
        }

        public <T> DataStream<T> apply(
                JoinFunction<T1, T2, T> function, TypeInformation<T> resultType) {
            // clean the closure
            function = input1.getExecutionEnvironment().clean(function);
           //源码使用coGroup,继续点击co
            coGroupedWindowedStream =
                    input1.coGroup(input2)
                            .where(keySelector1)
                            .equalTo(keySelector2)
                            .window(windowAssigner)
                            .trigger(trigger)
                            .evictor(evictor)
                            .allowedLateness(allowedLateness);
                             // 点击查看实现的JoinCoGroupFunction源码
            return coGroupedWindowedStream.apply(new JoinCoGroupFunction<>(function), resultType);
        }
===========查看实现JoinCoGroupFunction,源码中将两个集合做笛卡尔积 ===========================
  public JoinCoGroupFunction(JoinFunction<T1, T2, T> wrappedFunction) {
            super(wrappedFunction);
        }

        @Override
        public void coGroup(Iterable<T1> first, Iterable<T2> second, Collector<T> out)
                throws Exception {
            for (T1 val1 : first) {
                for (T2 val2 : second) {
                    out.collect(wrappedFunction.join(val1, val2));
                }
            }
        }
    }


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/757400.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

大模型微调实战之基于星火大模型的群聊对话分角色要素提取挑战赛:Task01:跑通Baseline

目录 0 背景1 环境配置1.1 下载包1.2 配置密钥1.3 测试模型 2 解决问题2.1 获取数据2.2 设计Prompt2.2 设计处理函数2.3 开始提取 附全流程代码 0 背景 Datawhale AI夏令营第二期开始啦&#xff0c;去年有幸参与过第一期&#xff0c;收获很多&#xff0c;这次也立马参与了第二…

昇思MindSpore学习笔记5--数据变换Transforms

摘要&#xff1a; 昇思MindSpore的数据变换&#xff0c;包括通用变换Common Transforms、图像变换Vision Transforms、标准化Normalize、文本变换Text Transforms、匿名函数变换Lambda Transforms。 一、数据变换Transforms概念 原始数据需预处理后才能送入神经网络进行训练…

【网络】计算机网络-基本知识

目录 概念计算机网络功能计算机网络的组成计算机网络的分类 网络地址网络地址的分类 计算机网络相关性能指标速率带宽吞吐量时延时延的种类&#xff1a; 时延带宽积往返时延RTT利用率 概念 计算机网络是指将多台计算机通过通信设备连接起来&#xff0c;实现数据和资源的共享。…

spring mvc实现一个自定义Formatter请求参数格式化

使用场景 在Spring Boot应用中&#xff0c;Formatter接口用于自定义数据的格式化&#xff0c;比如将日期对象格式化为字符串&#xff0c;或者将字符串解析回日期对象。这在处理HTTP请求和响应时特别有用&#xff0c;尤其是在展示给用户或从用户接收特定格式的数据时。下面通过…

Arthas快速入门

简介 Arthas 是一款线上监控诊断产品&#xff0c;通过全局视角实时查看应用 load、内存、gc、线程的状态信息&#xff0c;并能在不修改应用代码的情况下&#xff0c;对业务问题进行诊断&#xff0c;包括查看方法调用的出入参、异常&#xff0c;监测方法执行耗时&#xff0c;类…

3.3V到5V的负电源产生电路(电荷泵电压反相器)SGM3204输出电流0.2A封装SOT23-6

前言 SGM3204 非稳压 200mA 电荷泵负电源产生电路&#xff0c;LCEDA原理图请访问资源 SGM3204电荷泵负电源产生电路 SGM3204电荷泵负电源产生电路 一般描述 SGM3204从 1.4V 至 5.5V 的输入电压范围产生非稳压负输出电压。 该器件通常由 5V 或 3.3V 的预稳压电源轨供电。由于…

ElementUI的基本搭建

目录 1&#xff0c;首先在控制终端中输入下面代码&#xff1a;npm i element-ui -S 安装element UI 2&#xff0c;构架登录页面&#xff0c;login.vue​编辑 3&#xff0c;在官网获取对应所需的代码直接复制粘贴到对应位置 4&#xff0c;在继续完善&#xff0c;从官网添加…

OverTheWire Bandit 靶场通关解析(中)

介绍 OverTheWire Bandit 是一个针对初学者设计的网络安全挑战平台&#xff0c;旨在帮助用户掌握基本的命令行操作和网络安全技能。Bandit 游戏包含一系列的关卡&#xff0c;每个关卡都需要解决特定的任务来获取进入下一关的凭证。通过逐步挑战更复杂的问题&#xff0c;用户可…

14-7 为什么你的梦想职业可能会扼杀你的梦想

照片由Johnny Cohen在Unsplash拍摄 “做好工作的唯一方法就是热爱你所做的事情。如果你还没有找到&#xff0c;那就继续寻找。不要安于现状。”——史蒂夫乔布斯 等一下&#xff0c;什么&#xff1f; 这不是一篇关于无聊工作的文章吗&#xff1f;我为什么要用一句完全违背前提…

windows@文件高级共享设置@网络发现功能@从资源管理器网络中访问远程桌面

文章目录 高级共享设置常用选项其他选项操作界面说明 网络类型检查和设置(专用网络和公用网络)&#x1f47a;Note 高级共享设置和防火墙&#x1f47a;命令行方式使用图形界面方式配置 网络发现网络发现功能的详细介绍网络发现的作用&#x1f47a;网络发现的工作原理启用和配置网…

Vulnhub-AdmX

主机发现 靶机 &#xff1a; 192.168.145.131131 这台主机 存活 端口扫描 nmap -sV -O -p 1-65535 192.168.145.131 存在 80 端口 &#xff0c;这里连ssh 端口都没了 80 端口存在 Apache httpd 2.4.1 存在 Apache 默认页面 像这种页面 &#xff0c;没有什么具体的价值 扫描一…

Linux的fwrite函数

函数原型: 向文件fp中写入writeBuff里面的内容 int fwrite(void*buffer&#xff0c;intsize&#xff0c;intcount&#xff0c;FILE*fp) /* * description : 对已打开的流进行写入数据块 * param ‐ ptr &#xff1a;指向 数据块的指针 * param ‐ size &#xff1a;指定…

Webpack: 开发 PWA、Node、Electron 应用

概述 毋庸置疑&#xff0c;对前端开发者而言&#xff0c;当下正是一个日升月恒的美好时代&#xff01;在久远的过去&#xff0c;Web 页面的开发技术链条非常原始而粗糙&#xff0c;那时候的 JavaScript 更多用来点缀 Web 页面交互而不是用来构建一个完整的应用。直到 2009年5月…

Transformer教程之序列到序列模型(Seq2Seq)

在自然语言处理&#xff08;NLP&#xff09;的领域中&#xff0c;Transformer模型无疑是近年来最具革命性的方法之一。它的出现不仅大大提高了机器翻译、文本生成等任务的精度&#xff0c;还推动了整个深度学习研究的进步。本文将详细介绍Transformer模型中的序列到序列模型&am…

Redisson(分布式锁、限流)

注意Redisson是基于Redis的&#xff0c;所以必须先引入Redis配置&#xff08;参考SpringBoot集成Redis文章&#xff09; 1. 集成Redisson 引入依赖 <!-- 二选一,区别是第一个自动配置&#xff0c;第二个还需要手动配置也就是第二步自定义配置&#xff0c;注意版本号&…

Java对应C++ STL的用法

sort&#xff1a; 1&#xff1a;java.util.Arrays中的静态方法Arrays.sort()方法&#xff0c;针对基本数据类型和引用对象类型的数组元素排序 2&#xff1a;java.util.Collections中的静态方法的Collections.sort()方法&#xff0c;针对集合框架中的动态数组&#xff0c;链表&…

【mysql的行记录格式】

记录头信息 除了变长字段长度列表、NULL值列表之外&#xff0c;还有一个用于描述记录的记录头信息&#xff0c;它是由固定的5个字节组成。5个字节也就是40个二进制位&#xff0c;不同的位代表不同的意思&#xff0c;如图&#xff1a; 记录的真实数据 对于record_format_demo表来…

linux中的各种指令

按文件的大小进行查找 find / usr -size 100M 在home路径下创建txt文件 touch test.txt 查看test.txt文件中的内容&#xff1a; cat test.txt通过指令pwd可以查看当前所处路径。 切换超级用户的指令&#xff1a; su - root 离开时可以使用指令&#xff1a;exit grep指…

.net 项目中配置 Swagger

一、前言 二、Swagger 三、.net 项目中添加Swagger 1、准备工作 &#xff08;1&#xff09;.net项目 &#xff08;2&#xff09;SwaggerController &#xff08;3&#xff09;XML文档注释 2、安装Swagger包 3、 添加配置swagger中间件 &#xff08;1&#xff09;添加S…

深入理解Unix/Linux中sync、fsync、fdatasync和sync_file_range系统调用以及他们的区别

前言 在linux内核中都有缓冲区或者页面高速缓存&#xff0c;大多数磁盘IO都是通过缓冲写的。当你想将数据write进文件时&#xff0c;内核通常会将该数据复制到其中一个缓冲区中&#xff0c;如果该缓冲没被写满的话&#xff0c;内核就不会把它放入到输出队列中。当这个缓冲区被…