AI小白使用Macbook Pro安装llama3与langchain初体验

1. 背景

AI爆火了2年有余,但我仍是一个AI小白,最近零星在学,随手记录点内容供自己复习。

上次在Macbook Pro上安装了Stable Diffusion,体验了本地所心所欲地生成各种心仪的图片,完全没有任何限制的惬意。今天想使用Macbook Pro安装一个本地大语言模型体验一下,刚好在2024年4月18日,Meta在官网上宣布公布了旗下最新大模型Llama 3,并开放了80亿(8b)和700亿(70b)两个小参数版本,据说能力显著提升。遂开干。

  • 为什么部署本地大模型

    • 学习方便,私有材料不用发给外网,可以为公司私有化部署积累经验。
    • 省钱,不需要单独买云主机,电脑放家里闲着也是闲着。
  • 为什么选择llama3

    • 最新款。科技这东西,用新不用旧。
    • Meta出品,大厂品质有保证。
  • 这是本次用到的技术框架

2. 环境

硬件

型号:macbook pro 14寸

CPU:M2 MAX (12+38)

内存:96G

硬盘:8T

操作系统:maxOS 14.3.1

软件:

python 3.11

conda 24.3.0

llama3 8B 和 70B

3. 安装llama3

登录官网:[github.com/ollama/olla…]

下载安装包:[ollama.com/download/Ol…]

解压后运行:Ollama,初始化环境。

先体验8B模型,在命令行窗口运行(第一次运行会下载并安装模型):

ollama run llama3

安装完成后,输出提示“end a message (/? for help),可以随便输入信息。

对中文支持还不错。

4. 使用langchain完成简单的RAG

上面对广州的介绍输出非常简单,如果想使用自己语料库来完成,比如公司内部有自己的知识库,需要结合公司的知识库来回答问题,那就可以试试langchain。

简单地说,langchain 是一个帮助在应用程序中使用大型语言模型(LLM)的编程框架,可极大简化对LLM的调用。

详细介绍可参考官方文档:[python.langchain.com/docs/get_st…]

快速开始:[python.langchain.com/docs/get_st…]

安装:

conda install langchain -c conda-forge

报错:“Verifying transaction: / WARNING conda.core.path_actions:verify(1055): Unable to create environments file. Path not writable.”

说明没有写权限,把对应文件owner修改为当前登录用户:

sudo chown -R $USER ~/.conda

为了方便,使用PyCharm来写测试文件。

上面使用conda安装langchain的环境,所以新建项目的环境选择“Select existing”,再选择conda。

写一个python文件测试:

from langchain_community.llms import Ollama

llm = Ollama(model="llama3")
response = llm.invoke("使用中文介绍一下广州")
print(response)

报错,提示要安装llama2,根据提示修改文件“/opt/homebrew/anaconda3/lib/python3.11/site-packages/langchain_community/embeddings/ollama.py”,使用llama3替换:

#model: str = "llama2"
model: str = "llama3"

再次报错,提示要安装faiss,使用命令行安装:

pip install faiss-cpu

终于跑成功,输出如下:

换成百度百科的语料,python文件如下:

from langchain_community.llms import Ollama
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.embeddings import OllamaEmbeddings
from langchain_community.document_loaders import WebBaseLoader
from langchain_community.vectorstores import FAISS
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain.chains import create_retrieval_chain

#加载文件
loader = WebBaseLoader("https://baike.baidu.com/item/%E5%B9%BF%E5%B7%9E%E5%B8%82/21808?fromtitle=%E5%B9%BF%E5%B7%9E&fromid=72101&fr=aladdin")
page_context = loader.load()
#分词
text_splitter = RecursiveCharacterTextSplitter()
split_documents = text_splitter.split_documents(page_context)

embeddings = OllamaEmbeddings()

#保存到向量库
vector = FAISS.from_documents(split_documents, embeddings)
retriever = vector.as_retriever()

#提示词模板
prompt = ChatPromptTemplate.from_template("""Answer question based on the provided context:
<context>{context}</context>
Question: {input}""")

#加载模型
llm = Ollama(model="llama3")
document_chain = create_stuff_documents_chain(llm, prompt)

retrieval_chain = create_retrieval_chain(retriever, document_chain)
response = retrieval_chain.invoke({"input": "使用中文介绍广州"})
print(response["answer"])

输出如下,可以看出输出的内容部分使用了百度百科最新的数据:

如果把提示词修改一下:“Answer question only based on the provided context”,就是里面加上限定词“only”,输出就只有百度百科的内容,如下:

5. 测试llama3 70b

如果内存足够大,可以选择安装70b模型。70b与8b的区别我现在只知道参数一个多一个少,对硬件要求不同,具体能力区别,还得后面去学习验证。

安装:

ollama run llama3:70b

70b模型安装文件达到了39G多,而8b模型文件是4.7G。

安装完成后,使用命令行测试,输出:

70b模型通过langchain无专属语料输出:

通过对比,在不使用专属语料库的情况下,70b模型比8b模型输出内容更为丰富

70b模型通过langchain使用专属语料输出:

通过对比,使用专属语料库的情况下,70b模型和8b模型输出内容看不出明显差异。

6. 机器消耗

跑问题时,CPU基本空转,内存跑到64G,GPU打满,风扇呼呼响。

不跑问题时,内存在27G,GPU和CPU负载都很低,风扇不转。

7. 小结

Macbook pro 跑大模型在网上经常被人笑话,不过自己安装玩一玩,学一学,还是不错的,反正我自己用得挺好的。有空的时候再去云平台搞台N卡的机器试试,看到有些云主机平台还有免费试用3个月的带显卡的AI专用虚机供申请,过几天去薅羊毛看看效果。

这也是我第一次写python,果然比java方便。

最后,支付公司都有各种各样的技术文档,可以私有化部署LLM,再结合RAG,私有文档库,做成专有的专家知识库,不仅可以用于外部客户答疑,内部同学值班处理线上问题也是非常方便的。

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/752319.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

从@Param注解开始,深入了解 MyBatis 参数映射的原理

系列文章目录 MyBatis缓存原理 Mybatis plugin 的使用及原理 MyBatisSpringboot 启动到SQL执行全流程 数据库操作不再困难&#xff0c;MyBatis动态Sql标签解析 Mybatis的CachingExecutor与二级缓存 使用MybatisPlus还是MyBaits &#xff0c;开发者应该如何选择&#xff1f; 巧…

解决所有终端中文输出乱码的问题

一、系统自带的cmd.exe 以及 Git的bash.exe、sh.exe、git-bash.exe和git-cmd.exe&#xff0c;和PowerShell默认使用“当前系统区域设置”设定好的936 (ANSI/OEM - 简体中文 GBK)语言编码。 1、[当前代码页] 的936 (ANSI/OEM - 简体中文 GBK) 是导致中文乱码的原因 在控制面板→…

【基于深度学习方法的激光雷达点云配准系列之GeoTransformer】——模型部分浅析(1)

【GeoTransformer系列】——模型部分 1. create_model2. model的本质3. 模型的主要结构3.1 backbone3.2 transformer本篇继续对GeoTransformer/experiments/geotransformer.kitti.stage5.gse.k3.max.oacl.stage2.sinkhorn/下面的trainval.py进行详细的解读,主要是模型部分, 可以…

单位转换:将kb转换为 MB ,GB等形式

写法一&#xff1a; function formatSizeUnits(kb) {let units [KB, MB, GB, TB, PB,EB,ZB,YB];let unitIndex 0;while (kb > 1024 && unitIndex < units.length - 1) {kb / 1024;unitIndex;}return ${kb.toFixed(2)} ${units[unitIndex]}; } console.log(for…

linux 下配置docker mirrors

一、配置mirrors vi /etc/docker/daemon.json {"registry-mirrors": ["https://docker.blfrp.cn"],"log-opts": {"max-size": "10m","max-file": "3"} }#完成配置后重启docker systemctl restart dock…

SAP ALV 负号提前

FUNCTION CONVERSION_EXIT_ZSIGN_OUTPUT. *"---------------------------------------------------------------------- *"*"本地接口&#xff1a; *" IMPORTING *" REFERENCE(INPUT) *" EXPORTING *" REFERENCE(OUTPUT) *"…

labview排错

源代码正常跑&#xff0c;应用程序报这个错&#xff0c;是因为源代码的可以找到项目路径内所有dll的路径&#xff0c;而应用程序只能找到data文件夹的dll文件 解决查看源代码中.net的程序集的路径&#xff0c;复制对应的dll到data文件夹下

24V 350W开关电源电路原理图+PCB工程文件 UC3843AD lm193芯片

资料下载地址&#xff1a;24V 350W开关电源电路原理图PCB工程文件 UC3843AD lm193芯片 1、原理图 2、PCB

昇思25天学习打卡营第5天|数据变换Transforms

数据变换 Transforms 在完成数据加载后&#xff0c;还应该对数据进行预处理。之前在数据集篇介绍过map函数&#xff0c;这里的transform就是和map一起使用的。transform有针对图像、文本、音频等不同类型的&#xff0c;并且也支持lambda函数。 环境配置 import numpy as np …

Echarts地图实现:各省市计划录取人数

Echarts地图实现&#xff1a;各省市计划录取人数 实现功能 本文将介绍如何使用 ECharts 制作一个展示中国人民大学2017年各省市计划录取人数的地图。我们将实现以下图表形式&#xff1a; 地图&#xff1a;基础的地图展示&#xff0c;反映不同省市的录取人数。散点图&#xf…

华为od 2024 | 什么是华为od,od 薪资待遇,od机试题清单

目录 专栏导读华为OD机试算法题太多了&#xff0c;知识点繁杂&#xff0c;如何刷题更有效率呢&#xff1f; 一、逻辑分析二、数据结构1、线性表① 数组② 双指针 2、map与list3、队列4、链表5、栈6、滑动窗口7、二叉树8、并查集9、矩阵 三、算法1、基础算法① 贪心思维② 二分查…

【系统架构设计师】四、嵌入式基础知识(软件|软件设计|硬件|式总线逻辑)

目录 一、嵌入式软件 1.1 嵌入式软件分类 1.2 板级支持包(BSP) 1.3 BootLoader 1.4 设备驱动程序 二、嵌入式软件设计 2.1 编码 2.2 交叉编译 2.3 交叉调试 三、嵌入式系统硬件的分类 3.1 根据用途分类 3.2 存储器分类 四、内&#xff08;外&#xff09;总线逻辑 …

江科大笔记—FLASH闪存

FLASH闪存 程序现象&#xff1a; 1、读写内部FLASH 这个代码的目的&#xff0c;就是利用内部flash程序存储器的剩余空间&#xff0c;来存储一些掉电不丢失的参数。所以这里的程序是按下K1变换一下测试数据&#xff0c;然后存储到内部FLASH&#xff0c;按下K2把所有参数清0&…

力扣每日一题 6/23 字符串/模拟

博客主页&#xff1a;誓则盟约系列专栏&#xff1a;IT竞赛 专栏关注博主&#xff0c;后期持续更新系列文章如果有错误感谢请大家批评指出&#xff0c;及时修改感谢大家点赞&#x1f44d;收藏⭐评论✍ 520.检测大写字母【简单】 题目&#xff1a; 我们定义&#xff0c;在以下…

【web开发】chrome拦截localhost跨域请求原因

在设置中&#xff0c;默认屏蔽了&#xff0c;请求不会到localhost服务器 chrome://flags/#block-insecure-private-network-requests 设置disable即可

solidworks钣金工厂共享云桌面方案

随着信息技术的飞速发展和企业数字化转型的深入&#xff0c;传统的钣金工厂面临着诸多挑战&#xff0c;其中之一就是如何在保证数据安全的前提下&#xff0c;提高设计、生产和管理的效率。 SolidWorks是一款专业的三维3D设计软件&#xff0c;功能强悍&#xff0c;支持分布式数…

Word页眉横线怎么删除?5个方法,记得收藏!

在数字化办公日益普及的今天&#xff0c;Word文档成为了我们日常工作中不可或缺的一部分。然而&#xff0c;在编辑和排版Word文档时&#xff0c;我们有时会面临一些看似微小却令人头疼的问题&#xff0c;比如页眉中的横线。这条不起眼的横线&#xff0c;就像是在整洁的页面上划…

基于SpringBoot的藏区特产销售平台

你好呀&#xff0c;我是计算机学姐码农小野&#xff01;如果有相关需求&#xff0c;可以私信联系我。 开发语言&#xff1a; Java 数据库&#xff1a; MySQL 技术&#xff1a; SpringBoot框架 工具&#xff1a; MyEclipse 系统展示 首页 个人中心 特产信息管理 订单管…

CentOS安装Docker教程(包含踩坑的经验)

目录 一.基础安装 ▐ 安装Docker 二.启动Docker服务 三.配置Docker镜像加速 一.基础安装 在安装Docker之前可能需要先做以下准备 首先如果系统中已经存在旧的Docker&#xff0c;则先卸载&#xff1a; yum remove docker \docker-client \docker-client-latest \docker-…

现货黄金如何操作:黄金技术性止损的运用

止损是现货黄金如何操作中不得不提及的方法。在现货黄金投资过程中&#xff0c;风险是存在的&#xff0c;重要的是如何将风险把控好。这里的一个重要概念就是&#xff0c;要对每一笔交易设定好止损&#xff0c;可以讲&#xff0c;这就是现货黄金如何操作的方法中最重要的一种。…