勘探开发人工智能技术:机器学习(6)

0 提纲

7.1 循环神经网络RNN
7.2 LSTM
7.3 Transformer
7.4 U-Net

1 循环神经网络RNN

把上一时刻的输出作为下一时刻的输入之一.

1.1 全连接神经网络的缺点

现在的任务是要利用如下语料来给apple打标签:

  • 第一句话:I like eating apple!(我喜欢吃苹果!)
  • 第二句话:The Apple is a great company!(苹果真是一家很棒的公司!)

第一个apple是一种水果,第二个apple是苹果公司。
全连接神经网络没有利用上下文来训练模型,模型在训练的过程中,预测的准确程度,取决于训练集中哪个标签多一些,如果水果多,就打上水果的标签,如果苹果公司多,就打上苹果公司;显然这样的模型不能对未知样本进行准确的预测。
循环神经网络 (Recurrent Neural Network, RNN) 用于处理序列数据.

1.2 动机

序列数据中, 前后数据之间不是独立的, 而是会产生上下文影响. 如:

  • 文本, 机器翻译一个句子的时候, 不是逐个单词的翻译 (你可以发现近 10 年机器翻译的质量大幅提升, 最近的 chatGPT 更是火得一蹋糊涂);
  • 音频, 可以在微信中让机器把你讲的话转成文字;
  • 投票, 虽然股价预测不靠谱, 但根据时序进行预测却是人们最喜欢干的事情。

1.3 RNN的结构

在这里插入图片描述
左图如果不考虑 W W W,就是一个全连接神经网络:

  • 输入层:向量 x x x,假设维度为3;
  • 隐藏层:向量 s s s,假设维度为4;
  • 输出层:向量 o o o,假设维度为2;
  • U U U:输入层到隐藏层的参数矩阵,维度为 3 × 4 3×4 3×4
  • V V V:隐藏层到输出层的参数矩阵,维度为 4 × 2 4×2 4×2

左图如果考虑 W W W,可以展开为右图:

  • x t − 1 x_{t−1} xt1:表示 t − 1 t−1 t1时刻的输入;
  • x t x_t xt:表示 t t t时刻的输入;
  • x t + 1 x_{t+1} xt+1:表示 t + 1 t+1 t+1时刻的输入;
  • W W W:每个时间点的权重矩阵;
  • o t o_t ot:表示 t t t时刻的输出;
  • s t s_t st:表示 t t t时刻的隐藏层;

RNN 把前一时刻 (简便起见, 前一个单词我也称为前一时刻) 的输出, 当作本阶段输入的一部分. 这里 x t − 1 x_{t−1} xt1为前一时刻的输入, 而 s t − 1 s_{t-1} st1 为前一时刻的输出. 这样, 就把数据的前后联系体现出来了.

1.4 RNN的缺点

每一时刻的隐藏状态都不仅由该时刻的输入决定,还取决于上一时刻的隐藏层的值,如果一个句子很长,到句子末尾时,它将记不住这个句子的开头的内容详细内容。

2 长短期记忆网络LSTM

选择性的存储.

2.1 LSTM的原理

LSTM是高级的RNN,与RNN的主要区别在于:

  • RNN每个时刻都会把隐藏层的值存下来,到下一时刻再拿出来使用,RNN没有挑选的能力;
  • LSTM不一样,它有门控装置,会选择性的存储信息。既有记忆 (重要信息) 的功能, 也有遗忘 (不重要信息) 的功能.

在这里插入图片描述
LSTM多了三个门:

  • 输入门:输入的信息经过输入门,输入门的开关决定这一时刻是否会将信息输入到Memory Cell;
  • 输出门:每一时刻是否有信息从Memory Cell输出取决于这一道门;
  • 遗忘门:每一时刻Memory Cell里的值都会经历一个是否被遗忘的过程.

2.2 讨论?

遗忘也是一种功能吗? 当然是了.
所谓好了伤疤忘了痛, 如果一个人不会遗忘, 很快就精神失常了.
在这里插入图片描述
详细分析见:
https://mp.weixin.qq.com/s?__biz=MzU0MDQ1NjAzNg==&mid=2247535325&idx=1&sn=7d805b06916a3da299e20c0445f59a07&chksm=fb3aefd6cc4d66c06b0f2d5779c83861474d2442f9b3387a4b87f45f3218efc92c3335602678&scene=27

3 变形金刚Transformer:注意力机制

定位到感兴趣的信息, 抑制无用信息 (怎么有点像 PCA).

3.1 CNN及RNN的缺点

  • RNN:很难实现并行(左图,计算 b 4 b^4 b4需要串行查询 a 1 , a 2 , a 3 , a 4 a^1,a^2,a^3,a^4 a1,a2,a3,a4);
  • CNN:可以实现并行,需要堆叠多层的CNN才能学习到整个序列的特征(右图).

在这里插入图片描述

3.2 自注意力机制(self-attention)

采用自注意力机制层取代RNN来处理序列,同时实现序列的并行处理。
自注意力机制具体内容见https://blog.csdn.net/search_129_hr/article/details/129522922

在这里插入图片描述

3.3 注意力机制

数据有重要的数据不重要的数据。在模型处理数据的过程中,如果只关注较为重要的数据部分,忽略不重要的部分,那训练的速度、模型的精度就会变得更好。
如果给你一张这个图,你眼睛的重点会聚焦在红色区域:
在这里插入图片描述

  • 人看脸
  • 文章看标题
  • 段落看开头

在训练过程中,输入的权重也都是不同的,注意力机制就是学习到这些权重
最开始attention机制在CV领域被提出来,后面广泛应用在NLP领域。
在这里插入图片描述

3.4 Tranformer的原理

Transformer 主要分为两部分:Encoder编码器 和 Decoder解码器

  • Encoder:负责把输入(语言序列)隐射成隐藏层(图中第 2 步九宫格表示),即把自然语言序列映射为隐藏层的数学表达的过程;
  • Decoder:把隐藏层映射为自然语言序列。

在这里插入图片描述

4 U-Net

先编码获得内部表示, 再解码获得目标数据 (怎么有点像矩阵分解).

4.1 U-Net核心思想

U-Net 集编码-解码于一体, 是一种常见的网络架构.
如图所示, U-Net 就是 U 形状的网络, 前半部分 (左边) 进行编码, 后半部分 (右边) 进行解码.
在这里插入图片描述
编码部分, 将一个图像经过特征提取, 变成一个小矩阵(28 × 28). 前面说过: 深度学习本质上只做一件事情, 就是特征提取.
解码部分, 将压缩表示解压, 又变回大矩阵,完成图像分割任务.
从思想上, 压缩与解压, 这与矩阵分解有几分类似, 都是把数据进行某种形式的压缩表示.

输入的是原始图像,通过网络结构后得到的是分割后的图像。
最特殊的部分是结构的后半部分,该网络结构没有全连接层,只采用了卷积层,每个标准的卷积层后面都紧跟着一个Relu激活函数层

4.2 U-Net的应用

自编码器. 直接将输入数据作为标签, 看编码导致的损失 (更像矩阵分解了).
风格迁移:从一种风格转换为另一种风格. 如将自然照片转换成卡通风格, 将地震数据转换成速度模型 (2010年如果你这么做会被业内人士笑话的).
图像分割, 或提取图片的边缘. 嗯, 这个和转成卡通风格也差不多.
机器翻译. 把句子编码成机器内部的表示 (一种新的世界语言?), 然后转成其它语言的句子.
输入一个头, 输出多个头, 就可以做多任务. 如在速度模型反演的同时, 进行边缘提取, 这样导致反演的结果更丝滑.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/74990.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

css3-flex布局:基础使用 / Flexbox布局

一、理解flex 二、理解Flex布局(又称Flexbox布局) Flex布局(又称Flexbox布局)是一种基于Web的CSS3布局模式,其目的是为了更加灵活和自适应地布置各种各样的网页元素。Flex布局通过将一个父容器分割为一个或多个弹性项…

spring cloud alibaba 应用无法注册到sentinel dashboard

一。技术背景 由于升级jdk17的需要 我们将项目中的 spring cloud spring cloud alibaba 以及springboot进行了升级 各版本如下 spring cloud 2021.0.5 spring cloud alibaba 2021.0.5.0 spring boot 2.6.13 二。问题表现 当启动项目服务后,服务无法注册到 sentin…

开发规范(一):Mysql篇

1. 流程 数据库表结构的修改需要相关人员和Leader一起评审,保证符合涉及规范。 不允许使用root账号,所有开发和测试应当分配指定账号,并授予最小数据库权限 2. 数据库与表规范 表命名规范 常规表表名以 t_开头,t 代表 table 的意思…

安卓逆向 - 某麦网 x-mini-wua x-sgext x-sign x-umt x-utdid

本文仅供学习交流,只提供关键思路不会给出完整代码,严禁用于非法用途,若有侵权请联系我删除! 目标app: 5aSn6bqm572ROC41LjQ 目标接口:aHR0cHM6Ly9hY3MubS50YW9iYW8uY29tL2d3L210b3AuZGFtYWkud2lyZWxlc3MuZGlzY292ZX…

vue element 多图片组合预览

定义组件&#xff1a;preview-image <template><div><div class"imgbox"><divclass"preview-img":class"boxClass"v-if"Imageslist 3 ||Imageslist 5 ||Imageslist 7 ||Imageslist 8 ||Imageslist > 9"&…

IK分词器升级,MySQL热更新助一臂之力

ik分词器采用MySQL热更新 ​ 官方所给的IK分词器只支持远程文本文件热更新&#xff0c;不支持采用MySQL热更新&#xff0c;没关系&#xff0c;这难不倒伟大的博主&#xff0c;给哈哈哈。今天就来和大家讲一下如何采用MySQL做热更新IK分词器的词库。 一、建立数据库表 CREATE…

Vue-4.编译器VsCode

准备 Vue-1.零基础学习Vue Vue-2.nodejs的介绍和安装 Vue-3.vue简介 为什么用VsCode VsCode 是Vue官网首推的编译器它是完全免费的 下载安装VsCode 下载地址 安装的时候不停地下一步直到完成即可 安装插件 安装汉化插件 要将 Visual Studio Code&#xff08;VSCode&am…

回归预测 | MATLAB实现基于LSSVM-Adaboost最小二乘支持向量机结合AdaBoost多输入单输出回归预测

回归预测 | MATLAB实现基于LSSVM-Adaboost最小二乘支持向量机结合AdaBoost多输入单输出回归预测 目录 回归预测 | MATLAB实现基于LSSVM-Adaboost最小二乘支持向量机结合AdaBoost多输入单输出回归预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 1.Matlab实现L…

elasticsearch-head 插件

1、elastic 插件说明 **Head** 是第三方提供的一款很优秀的插件&#xff0c;集监控、查询、配置一体的web功能系统&#xff0c;可以在系统中进行创建、删除索引 、文档。以及查询、配置索引等功能&#xff0c;深受广大开发者的喜爱 **Kopf** 是另一个第三方提供的一款很优秀…

云原生k8s---资源限制、探针

目录 一&#xff1a;资源限制 1、资源限制原因 2、Pod 和 容器 的资源请求和限制 3、CPU 资源单位 4、内存 资源单位 5、事例 &#xff08;1&#xff09;事例一 &#xff08;2&#xff09;事例二 二&#xff1a;重启策略 1、重启策略模式 2、事例 三&#xff1a;探针…

微信小程序实现左滑删除

一、效果 二、代码 实现思路使用的是官方提供的 movable-area&#xff1a;注意点&#xff0c;需要设置其高度&#xff0c;否则会出现列表内容重叠的现象。由于movable-view需要向右移动&#xff0c;左滑的时候给删除控件展示的空间&#xff0c;故 movable-area 需要左移 left:…

视觉学习(七)---Flask 框架下接口调用及python requests 实现json字符串传输

在项目实施过程中需要与其他系统进行接口联调&#xff0c;将图像检测的结果传递给其他系统接口&#xff0c;进行逻辑调用。这中间的过程可以通过requests库进行实现。 1.安装requests库 pip install requests2.postman 接口测试 我们先通过postman 了解下接口调用&#xff0…

linux系统服务学习(二)linux下yum源配置实战

文章目录 Linux下yum源配置实战一、Linux下软件包的管理1、软件安装方式2、源码安装的配置过程3、详解源码安装的配置过程&#xff08;定制&#xff09;4、详解编译过程5、安装过程6、axel多线程下载软件源码安装7、使用软链接解决command not found8、使用环境变量解决command…

springcloud3 hystrix实现服务降级,熔断,限流以及案例配置

一 hystrix的作用 1.1 降级&#xff0c;熔断&#xff0c;限流 1.服务降级&#xff1a; A方案出现问题&#xff0c;切换到兜底方案B&#xff1b; 2.服务熔断&#xff1a;触发规则&#xff0c;出现断电限闸&#xff0c;服务降级 3.服务限流&#xff1a;限制请求数量。 二 案例…

【机器学习5】数据处理(二)Pandas:表格处理

Pandas:表格处理 &#x1f31f;&#x1f31f;Pandas三种数据类型✨✨Series数据结构✨✨ DataFrame数据结构&#x1f319;&#x1f319;DataFrame数据的选取&#x1f315;&#x1f315;DataFrame的构建&#x1f315;&#x1f315;选取多行&#x1f315;&#x1f315;选取某一列…

【广州华锐视点】VR燃气轮机故障判断模拟演练系统

VR燃气轮机故障判断模拟演练系统由广州华锐视点开发&#xff0c;是一款基于虚拟现实技术的教育工具&#xff0c;旨在为学生提供一个安全、高效、互动的学习环境&#xff0c;帮助他们更好地掌握燃气轮机的故障诊断技能。 这款VR实训软件能够模拟真实的燃气轮机故障诊断场景&…

JVM---理解jvm之对象已死怎么判断?

目录 引用计数算法 什么是引用 可达性分析算法&#xff08;用的最多的&#xff09; 引用计数算法 定义&#xff1a;在对象中添加一个引用计数器&#xff0c;每当有一个地方引用它时&#xff0c;计数器值就加一&#xff1b;当引用失效时&#xff0c;计数器值就减一&#xff1…

利用python实现批量登录网络设备进行日常巡检

利用python实现批量登录网络设备 实现ensp与物理机互通ensp 配置配置网络设备远程登录 用python实现批量登录常见问题 通过阅读本文可以学习自动化运维相关知识&#xff0c;本文章代码可以直接使用&#xff0c;通过批量登录功能后&#xff0c;可以按照自己意愿进行功能更改与完…

CentOS7最小化安装使用KVM虚拟化

说明&#xff1a;本文初衷在于记录一次实战经验&#xff0c;以便后续参考&#xff0c;不具有任何权威作用&#xff0c;如若对你有帮助深感荣幸&#xff01; 一、环境安装 CentOS Linux release 7.9.2009 (Core)【不带GUI】Xshell 6Xmanager 6 # 执行 export DISPLAY客户端机器…

MongoDB数据库

目录 一、概述 二、安装 三、目录结构 四、MongoDB数据库操作 五、MongoDB数据库备份 一、概述 mongodb是一个nosql数据库&#xff0c;它有高性能、无模式、文档型的特点。是nosql数据库中功能最丰富&#xff0c;最像关系数据库的。数据库格式为BSON 相关概念 实例&…