云原生k8s---资源限制、探针

目录

一:资源限制

1、资源限制原因

2、Pod 和 容器 的资源请求和限制

3、CPU 资源单位

4、内存 资源单位 

5、事例

(1)事例一

(2)事例二

 二:重启策略

1、重启策略模式

2、事例

三:探针

1、探针简介

2、探针的三种规则

3、Probe支持三种检查方法

4、事例

(1)exec方式

(2)httpGet方式

(3)tcpSocket方式

(4)就绪检测

(5)就绪检测2


一:资源限制

1、资源限制原因

当定义 Pod 时可以选择性地为每个容器设定所需要的资源数量。 最常见的可设定资源是 CPU 和内存大小,以及其他类型的资源。

当为 Pod 中的容器指定了 request 资源时,代表容器运行所需的最小资源量,调度器就使用该信息来决定将 Pod 调度到哪个节点上。当还为容器指定了 limit 资源时,kubelet 就会确保运行的容器不会使用超出所设的 limit 资源量。kubelet 还会为容器预留所设的 request 资源量, 供该容器使用。

如果 Pod 运行所在的节点具有足够的可用资源,容器可以使用超出所设置的 request 资源量。不过,容器不可以使用超出所设置的 limit 资源量。

如果给容器设置了内存的 limit 值,但未设置内存的 request 值,Kubernetes 会自动为其设置与内存 limit 相匹配的 request 值。 类似的,如果给容器设置了 CPU 的 limit 值但未设置 CPU 的 request 值,则 Kubernetes 自动为其设置 CPU 的 request 值 并使之与 CPU 的 limit 值匹配。


官网示例:
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/

2、Pod 和 容器 的资源请求和限制

spec.containers[].resources.requests.cpu        //定义创建容器时预分配的CPU资源
spec.containers[].resources.requests.memory        //定义创建容器时预分配的内存资源
spec.containers[].resources.limits.cpu            //定义 cpu 的资源上限 
spec.containers[].resources.limits.memory        //定义内存的资源上限

3、CPU 资源单位

CPU 资源的 request limit 以 cpu 为单位。Kubernetes 中的一个 cpu 相当于1个 vCPU(1个超线程)。
Kubernetes 也支持带小数 CPU 的请求。spec.containers[].resources.requests.cpu 为 0.5 的容器能够获得一个 cpu 的一半 CPU 资源(类似于Cgroup对CPU资源的时间分片)。表达式 0.1 等价于表达式 100m(毫核),表示每 1000 毫秒内容器可以使用的 CPU 时间总量为 0.1*1000 毫秒。
Kubernetes 不允许设置精度小于 1m 的 CPU 资源。 

4、内存 资源单位 

内存的 request 和 limit 以字节为单位。可以以整数表示,或者以10为底数的指数的单位(E、P、T、G、M、K)来表示, 或者以2为底数的指数的单位(Ei、Pi、Ti、Gi、Mi、Ki)来表示。
如:1KB=10^3=1000,1MB=10^6=1000000=1000KB,1GB=10^9=1000000000=1000MB
1KiB=2^10=1024,1MiB=2^20=1048576=1024KiB

PS:在买硬盘的时候,操作系统报的数量要比产品标出或商家号称的小一些,主要原因是标出的是以 MB、GB为单位的,1GB 就是1,000,000,000Byte,而操作系统是以2进制为处理单位的,因此检查硬盘容量时是以MiB、GiB为单位,1GiB=2^30=1,073,741,824,相比较而言,1GiB要比1GB多出1,073,741,824-1,000,000,000=73,741,824Byte,所以检测实际结果要比标出的少一些。

5、事例

(1)事例一

apiVersion: v1
kind: Pod
metadata:
  name: frontend
spec:
  containers:
  - name: app
    image: images.my-company.example/app:v4
    env:
    - name: MYSQL_ROOT_PASSWORD
      value: "password"
    resources:
      requests:
        memory: "64Mi"
        cpu: "250m"
      limits:
        memory: "128Mi"
        cpu: "500m"
  - name: log-aggregator
    image: images.my-company.example/log-aggregator:v6
    resources:
      requests:
        memory: "64Mi"
        cpu: "250m"
      limits:
        memory: "128Mi"
        cpu: "500m"


此例子中的 Pod 有两个容器。每个容器的 request 值为 0.25 cpu 和 64MiB 内存,每个容器的 limit 值为 0.5 cpu 和 128MiB 内存。那么可以认为该 Pod 的总的资源 request 为 0.5 cpu 和 128 MiB 内存,总的资源 limit 为 1 cpu 和 256MiB 内存。

(2)事例二

vim pod2.yaml
apiVersion: v1
kind: Pod
metadata:
  name: frontend
spec:
  containers:
  - name: web
    image: nginx
    env:
    - name: WEB_ROOT_PASSWORD
      value: "password"
    resources:
      requests:
        memory: "64Mi"
        cpu: "250m"
      limits:
        memory: "128Mi"
        cpu: "500m"
  - name: db
    image: mysql
    env:
    - name: MYSQL_ROOT_PASSWORD
      value: "abc123"
    resources:
      requests:
        memory: "512Mi"
        cpu: "0.5"
      limits:
        memory: "1Gi"
        cpu: "1"


kubectl apply -f pod2.yaml
kubectl describe pod frontend

kubectl get pods -o wide
NAME       READY   STATUS    RESTARTS   AGE   IP           NODE     NOMINATED NODE   READINESS GATES
frontend   2/2     Running   5          15m   10.244.2.4   node02   <none>           <none>

kubectl describe nodes node02                #由于当前虚拟机有2个CPU,所以Pod的CPU Limits一共占用了50%
Namespace                  Name                           CPU Requests  CPU Limits  Memory Requests  Memory Limits  AGE
  ---------                  ----                           ------------  ----------  ---------------  -------------  ---
  default                    frontend                       500m (25%)    1 (50%)     128Mi (3%)       256Mi (6%)     16m
  kube-system                kube-flannel-ds-amd64-f4pbp    100m (5%)     100m (5%)   50Mi (1%)        50Mi (1%)      19h
  kube-system                kube-proxy-pj4wp               0 (0%)        0 (0%)      0 (0%)           0 (0%)         19h
Allocated resources:
  (Total limits may be over 100 percent, i.e., overcommitted.)
  Resource           Requests    Limits
  --------           --------    ------
  cpu                600m (30%)  1100m (55%)
  memory             178Mi (4%)  306Mi (7%)
  ephemeral-storage  0 (0%)      0 (0%)

 二:重启策略

1、重启策略模式

重启策略(restartPolicy):当 Pod 中的容器退出时通过节点上的 kubelet 重启容器。适用于 Pod 中的所有容器。
1、Always:当容器终止退出后,总是重启容器,默认策略
2、OnFailure:当容器异常退出(退出状态码非0)时,重启容器;正常退出则不重启容器
3、Never:当容器终止退出,从不重启容器。
#注意:K8S 中不支持重启 Pod 资源,只有删除重建。

      在用 yaml 方式创建 Deployment 和 StatefulSet 类型时,restartPolicy 只能是 Always,kubectl run 创建 Pod 可以选择 Always,OnFailure,Never 三种策略

kubectl edit deployment nginx-deployment
......
  restartPolicy: Always

2、事例

//示例
vim pod3.yaml
apiVersion: v1
kind: Pod
metadata:
  name: foo
spec:
  containers:
  - name: busybox
    image: busybox
    args:
    - /bin/sh
    - -c
    - sleep 30; exit 3


kubectl apply -f pod3.yaml

//查看Pod状态,等容器启动后30秒后执行exit退出进程进入error状态,就会重启次数加1
kubectl get pods
NAME                              READY   STATUS             RESTARTS   AGE
foo                               1/1     Running            1          50s


kubectl delete -f pod3.yaml

vim pod3.yaml
apiVersion: v1
kind: Pod
metadata:
  name: foo
spec:
  containers:
  - name: busybox
    image: busybox
    args:
    - /bin/sh
    - -c
    - sleep 30; exit 3
  restartPolicy: Never
#注意:跟container同一个级别

kubectl apply -f pod3.yaml

//容器进入error状态不会进行重启
kubectl get pods -w

三:探针

1、探针简介

健康检查:又称为探针(Probe) 
探针是由kubelet对容器执行的定期诊断。

2、探针的三种规则

●livenessProbe :判断容器是否正在运行。如果探测失败,则kubelet会杀死容器,并且容器将根据 restartPolicy 来设置 Pod 状态。 如果容器不提供存活探针,则默认状态为Success。

●readinessProbe :判断容器是否准备好接受请求。如果探测失败,端点控制器将从与 Pod 匹配的所有 service endpoints 中剔除删除该Pod的IP地址。 初始延迟之前的就绪状态默认为Failure。如果容器不提供就绪探针,则默认状态为Success。

●startupProbe(这个1.17版本增加的):判断容器内的应用程序是否已启动,主要针对于不能确定具体启动时间的应用。如果配置了 startupProbe 探测,则在 startupProbe 状态为 Success 之前,其他所有探针都处于无效状态,直到它成功后其他探针才起作用。 如果 startupProbe 失败,kubelet 将杀死容器,容器将根据 restartPolicy 来重启。如果容器没有配置 startupProbe, 则默认状态为 Success。
#注:以上规则可以同时定义。在readinessProbe检测成功之前,Pod的running状态是不会变成ready状态的。

3、Probe支持三种检查方法

●exec :在容器内执行指定命令。如果命令退出时返回码为0则认为诊断成功。

●tcpSocket :对指定端口上的容器的IP地址进行TCP检查(三次握手)。如果端口打开,则诊断被认为是成功的。

●httpGet :对指定的端口和uri路径上的容器的IP地址执行HTTPGet请求。如果响应的状态码大于等于200且小于400,则诊断被认为是成功的

每次探测都将获得以下三种结果之一:
●成功(Success):表示容器通过了检测。
●失败(Failure):表示容器未通过检测。
●未知(Unknown):表示检测没有正常进行。


官网示例:
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/

4、事例

(1)exec方式

示例1:exec方式
apiVersion: v1
kind: Pod
metadata:
  labels:
    test: liveness
  name: liveness-exec
spec:
  containers:
  - name: liveness
    image: k8s.gcr.io/busybox
    args:
    - /bin/sh
    - -c
    - touch /tmp/healthy; sleep 30; rm -rf /tmp/healthy; sleep 60
    livenessProbe:
      exec:
        command:
        - cat
        - /tmp/healthy
      failureThreshold: 1
      initialDelaySeconds: 5
      periodSeconds: 5

#initialDelaySeconds:指定 kubelet 在执行第一次探测前应该等待5秒,即第一次探测是在容器启动后的第6秒才开始执行。默认是 0 秒,最小值是 0。
#periodSeconds:指定了 kubelet 应该每 5 秒执行一次存活探测。默认是 10 秒。最小值是 1。
#failureThreshold: 当探测失败时,Kubernetes 将在放弃之前重试的次数。 存活探测情况下的放弃就意味着重新启动容器。就绪探测情况下的放弃 Pod 会被打上未就绪的标签。默认值是 3。最小值是 1。
#timeoutSeconds:探测的超时后等待多少秒。默认值是 1 秒。最小值是 1。(在 Kubernetes 1.20 版本之前,exec 探针会忽略 timeoutSeconds 探针会无限期地 持续运行,甚至可能超过所配置的限期,直到返回结果为止。)

可以看到 Pod 中只有一个容器。kubelet 在执行第一次探测前需要等待 5 秒,kubelet 会每 5 秒执行一次存活探测。kubelet 在容器内执行命令 cat /tmp/healthy 来进行探测。如果命令执行成功并且返回值为 0,kubelet 就会认为这个容器是健康存活的。 当到达第 31 秒时,这个命令返回非 0 值,kubelet 会杀死这个容器并重新启动它。


vim exec.yaml
apiVersion: v1
kind: Pod
metadata:
  name: liveness-exec
  namespace: default
spec:
  containers:
  - name: liveness-exec-container
    image: busybox
    imagePullPolicy: IfNotPresent
    command: ["/bin/sh","-c","touch /tmp/live ; sleep 30; rm -rf /tmp/live; sleep 3600"]
    livenessProbe:
      exec:
        command: ["test","-e","/tmp/live"]
      initialDelaySeconds: 1
      periodSeconds: 3
      
kubectl create -f exec.yaml

kubectl describe pods liveness-exec
Events:
  Type     Reason     Age               From               Message
  ----     ------     ----              ----               -------
  Normal   Scheduled  51s               default-scheduler  Successfully assigned default/liveness-exec-pod to node02
  Normal   Pulled     46s               kubelet, node02    Container image "busybox" already present on machine
  Normal   Created    46s               kubelet, node02    Created container liveness-exec-container
  Normal   Started    45s               kubelet, node02    Started container liveness-exec-container
  Warning  Unhealthy  8s (x3 over 14s)  kubelet, node02    Liveness probe failed:
  Normal   Killing    8s                kubelet, node02    Container liveness-exec-container failed liveness probe,will be restarted

kubectl get pods -w
NAME                READY   STATUS    RESTARTS   AGE
liveness-exec       1/1     Running   1          85s

(2)httpGet方式

//示例2:httpGet方式
apiVersion: v1
kind: Pod
metadata:
  labels:
    test: liveness
  name: liveness-http
spec:
  containers:
  - name: liveness
    image: k8s.gcr.io/liveness
    args:
    - /server
    livenessProbe:
      httpGet:
        path: /healthz
        port: 8080
        httpHeaders:
        - name: Custom-Header
          value: Awesome
      initialDelaySeconds: 3
      periodSeconds: 3

在这个配置文件中,可以看到 Pod 也只有一个容器。initialDelaySeconds 字段告诉 kubelet 在执行第一次探测前应该等待 3 秒。periodSeconds 字段指定了 kubelet 每隔 3 秒执行一次存活探测。kubelet 会向容器内运行的服务(服务会监听 8080 端口)发送一个 HTTP GET 请求来执行探测。如果服务器上 /healthz 路径下的处理程序返回成功代码,则 kubelet 认为容器是健康存活的。如果处理程序返回失败代码,则 kubelet 会杀死这个容器并且重新启动它。

任何大于或等于 200 并且小于 400 的返回代码标示成功,其它返回代码都标示失败。

vim httpget.yaml
apiVersion: v1
kind: Pod
metadata:
  name: liveness-httpget
  namespace: default
spec:
  containers:
  - name: liveness-httpget-container
    image: soscscs/myapp:v1
    imagePullPolicy: IfNotPresent
    ports:
    - name: http
      containerPort: 80
    livenessProbe:
      httpGet:
        port: http
        path: /index.html
      initialDelaySeconds: 1
      periodSeconds: 3
      timeoutSeconds: 10
      
kubectl create -f httpget.yaml

kubectl exec -it liveness-httpget -- rm -rf /usr/share/nginx/html/index.html

kubectl get pods
NAME               READY   STATUS    RESTARTS   AGE
liveness-httpget   1/1     Running   1          2m44s

(3)tcpSocket方式

//示例3:tcpSocket方式
apiVersion: v1
kind: Pod
metadata:
  name: goproxy
  labels:
    app: goproxy
spec:
  containers:
  - name: goproxy
    image: k8s.gcr.io/goproxy:0.1
    ports:
    - containerPort: 8080
    readinessProbe:
      tcpSocket:
        port: 8080
      initialDelaySeconds: 5
      periodSeconds: 10
    livenessProbe:
      tcpSocket:
        port: 8080
      initialDelaySeconds: 15
      periodSeconds: 20

这个例子同时使用 readinessProbe 和 livenessProbe 探测。kubelet 会在容器启动 5 秒后发送第一个 readinessProbe 探测。这会尝试连接 goproxy 容器的 8080 端口。如果探测成功,kubelet 将继续每隔 10 秒运行一次检测。除了 readinessProbe 探测,这个配置包括了一个 livenessProbe 探测。kubelet 会在容器启动 15 秒后进行第一次 livenessProbe 探测。就像 readinessProbe 探测一样,会尝试连接 goproxy 容器的 8080 端口。如果 livenessProbe 探测失败,这个容器会被重新启动。

vim tcpsocket.yaml
apiVersion: v1
kind: Pod
metadata:
  name: probe-tcp
spec:
  containers:
  - name: nginx
    image: soscscs/myapp:v1
    livenessProbe:
      initialDelaySeconds: 5
      timeoutSeconds: 1
      tcpSocket:
        port: 8080
      periodSeconds: 10
      failureThreshold: 2

kubectl create -f tcpsocket.yaml

kubectl exec -it probe-tcp  -- netstat -natp
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address           Foreign Address         State       PID/Program name    
tcp        0      0 0.0.0.0:80              0.0.0.0:*               LISTEN      1/nginx: master pro

kubectl get pods -w
NAME        READY   STATUS    RESTARTS   AGE
probe-tcp   1/1     Running             0          1s
probe-tcp   1/1     Running             1          25s       #第一次是 init(5秒) + period(10秒) * 2
probe-tcp   1/1     Running             2          45s       #第二次是 period(10秒) + period(10秒)  重试了两次
probe-tcp   1/1     Running             3          65s

(4)就绪检测

//示例4:就绪检测
vim readiness-httpget.yaml
apiVersion: v1
kind: Pod
metadata:
  name: readiness-httpget
  namespace: default
spec:
  containers:
  - name: readiness-httpget-container
    image: soscscs/myapp:v1
    imagePullPolicy: IfNotPresent
    ports:
    - name: http
      containerPort: 80
    readinessProbe:
      httpGet:
        port: 80
        path: /index1.html
      initialDelaySeconds: 1
      periodSeconds: 3
    livenessProbe:
      httpGet:
        port: http
        path: /index.html
      initialDelaySeconds: 1
      periodSeconds: 3
      timeoutSeconds: 10

kubectl create -f readiness-httpget.yaml

//readiness探测失败,无法进入READY状态
kubectl get pods 
NAME                READY   STATUS    RESTARTS   AGE
readiness-httpget   0/1     Running   0          18s

kubectl exec -it readiness-httpget sh
 # cd /usr/share/nginx/html/
 # ls
50x.html    index.html
 # echo 123 > index1.html 
 # exit

kubectl get pods 
NAME                READY   STATUS    RESTARTS   AGE
readiness-httpget   1/1     Running   0          2m31s

kubectl exec -it readiness-httpget -- rm -rf /usr/share/nginx/html/index.html

kubectl get pods -w
NAME                READY   STATUS    RESTARTS   AGE
readiness-httpget   1/1     Running   0          4m10s
readiness-httpget   0/1     Running   1          4m15s

(5)就绪检测2

//示例5:就绪检测2
vim readiness-myapp.yaml
apiVersion: v1
kind: Pod
metadata:
  name: myapp1
  labels:
     app: myapp
spec:
  containers:
  - name: myapp
    image: soscscs/myapp:v1
    ports:
    - name: http
      containerPort: 80
    readinessProbe:
      httpGet:
        port: 80
        path: /index.html
      initialDelaySeconds: 5
      periodSeconds: 5
      timeoutSeconds: 10 
---
apiVersion: v1
kind: Pod
metadata:
  name: myapp2
  labels:
     app: myapp
spec:
  containers:
  - name: myapp
    image: soscscs/myapp:v1
    ports:
    - name: http
      containerPort: 80
    readinessProbe:
      httpGet:
        port: 80
        path: /index.html
      initialDelaySeconds: 5
      periodSeconds: 5
      timeoutSeconds: 10 
---
apiVersion: v1
kind: Pod
metadata:
  name: myapp3
  labels:
     app: myapp
spec:
  containers:
  - name: myapp
    image: soscscs/myapp:v1
    ports:
    - name: http
      containerPort: 80
    readinessProbe:
      httpGet:
        port: 80
        path: /index.html
      initialDelaySeconds: 5
      periodSeconds: 5
      timeoutSeconds: 10 
---
apiVersion: v1
kind: Service
metadata:
  name: myapp
spec:
  selector:
    app: myapp
  type: ClusterIP
  ports:
  - name: http
    port: 80
    targetPort: 80

kubectl create -f readiness-myapp.yaml

kubectl get pods,svc,endpoints -o wide
NAME         READY   STATUS    RESTARTS   AGE     IP            NODE     NOMINATED NODE   READINESS GATES
pod/myapp1   1/1     Running   0          3m42s   10.244.2.13   node02   <none>           <none>
pod/myapp2   1/1     Running   0          3m42s   10.244.1.15   node01   <none>           <none>
pod/myapp3   1/1     Running   0          3m42s   10.244.2.14   node02   <none>           <none>

NAME                 TYPE        CLUSTER-IP     EXTERNAL-IP   PORT(S)   AGE     SELECTOR
......
service/myapp        ClusterIP   10.96.138.13   <none>        80/TCP    3m42s   app=myapp

NAME                   ENDPOINTS                                      AGE
......
endpoints/myapp        10.244.1.15:80,10.244.2.13:80,10.244.2.14:80   3m42s


kubectl exec -it pod/myapp1 -- rm -rf /usr/share/nginx/html/index.html

//readiness探测失败,Pod 无法进入READY状态,且端点控制器将从 endpoints 中剔除删除该 Pod 的 IP 地址
kubectl get pods,svc,endpoints -o wide
NAME         READY   STATUS    RESTARTS   AGE     IP            NODE     NOMINATED NODE   READINESS GATES
pod/myapp1   0/1     Running   0          5m17s   10.244.2.13   node02   <none>           <none>
pod/myapp2   1/1     Running   0          5m17s   10.244.1.15   node01   <none>           <none>
pod/myapp3   1/1     Running   0          5m17s   10.244.2.14   node02   <none>           <none>

NAME                 TYPE        CLUSTER-IP     EXTERNAL-IP   PORT(S)   AGE     SELECTOR
......
service/myapp        ClusterIP   10.96.138.13   <none>        80/TCP    5m17s   app=myapp

NAME                   ENDPOINTS                       AGE
......
endpoints/myapp        10.244.1.15:80,10.244.2.14:80   5m17s


//启动、退出动作
vim post.yaml
apiVersion: v1
kind: Pod
metadata:
  name: lifecycle-demo
spec:
  containers:
  - name: lifecycle-demo-container
    image: soscscs/myapp:v1
    lifecycle:   #此为关键字段
      postStart:
        exec:
          command: ["/bin/sh", "-c", "echo Hello from the postStart handler >> /var/log/nginx/message"]      
      preStop:
        exec:
          command: ["/bin/sh", "-c", "echo Hello from the poststop handler >> /var/log/nginx/message"]
    volumeMounts:
    - name: message-log
      mountPath: /var/log/nginx/
      readOnly: false
  initContainers:
  - name: init-myservice
    image: soscscs/myapp:v1
    command: ["/bin/sh", "-c", "echo 'Hello initContainers'   >> /var/log/nginx/message"]
    volumeMounts:
    - name: message-log
      mountPath: /var/log/nginx/
      readOnly: false
  volumes:
  - name: message-log
    hostPath:
      path: /data/volumes/nginx/log/
      type: DirectoryOrCreate

kubectl create -f post.yaml

kubectl get pods -o wide
NAME             READY   STATUS    RESTARTS   AGE    IP            NODE     NOMINATED NODE   READINESS GATES
lifecycle-demo   1/1     Running   0          2m8s   10.244.2.28   node02   <none>           <none>

kubectl exec -it lifecycle-demo -- cat /var/log/nginx/message
Hello initContainers
Hello from the postStart handler

//在 node02 节点上查看
[root@node02 ~]# cd /data/volumes/nginx/log/
[root@node02 log]# ls
access.log  error.log  message
[root@node02 log]# cat message 
Hello initContainers
Hello from the postStart handler
#由上可知,init Container先执行,然后当一个主容器启动后,Kubernetes 将立即发送 postStart 事件。

//删除 pod 后,再在 node02 节点上查看
kubectl delete pod lifecycle-demo

[root@node02 log]# cat message 
Hello initContainers
Hello from the postStart handler
Hello from the poststop handler
#由上可知,当在容器被终结之前, Kubernetes 将发送一个 preStop 事件。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/74973.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

微信小程序实现左滑删除

一、效果 二、代码 实现思路使用的是官方提供的 movable-area&#xff1a;注意点&#xff0c;需要设置其高度&#xff0c;否则会出现列表内容重叠的现象。由于movable-view需要向右移动&#xff0c;左滑的时候给删除控件展示的空间&#xff0c;故 movable-area 需要左移 left:…

视觉学习(七)---Flask 框架下接口调用及python requests 实现json字符串传输

在项目实施过程中需要与其他系统进行接口联调&#xff0c;将图像检测的结果传递给其他系统接口&#xff0c;进行逻辑调用。这中间的过程可以通过requests库进行实现。 1.安装requests库 pip install requests2.postman 接口测试 我们先通过postman 了解下接口调用&#xff0…

linux系统服务学习(二)linux下yum源配置实战

文章目录 Linux下yum源配置实战一、Linux下软件包的管理1、软件安装方式2、源码安装的配置过程3、详解源码安装的配置过程&#xff08;定制&#xff09;4、详解编译过程5、安装过程6、axel多线程下载软件源码安装7、使用软链接解决command not found8、使用环境变量解决command…

springcloud3 hystrix实现服务降级,熔断,限流以及案例配置

一 hystrix的作用 1.1 降级&#xff0c;熔断&#xff0c;限流 1.服务降级&#xff1a; A方案出现问题&#xff0c;切换到兜底方案B&#xff1b; 2.服务熔断&#xff1a;触发规则&#xff0c;出现断电限闸&#xff0c;服务降级 3.服务限流&#xff1a;限制请求数量。 二 案例…

【机器学习5】数据处理(二)Pandas:表格处理

Pandas:表格处理 &#x1f31f;&#x1f31f;Pandas三种数据类型✨✨Series数据结构✨✨ DataFrame数据结构&#x1f319;&#x1f319;DataFrame数据的选取&#x1f315;&#x1f315;DataFrame的构建&#x1f315;&#x1f315;选取多行&#x1f315;&#x1f315;选取某一列…

【广州华锐视点】VR燃气轮机故障判断模拟演练系统

VR燃气轮机故障判断模拟演练系统由广州华锐视点开发&#xff0c;是一款基于虚拟现实技术的教育工具&#xff0c;旨在为学生提供一个安全、高效、互动的学习环境&#xff0c;帮助他们更好地掌握燃气轮机的故障诊断技能。 这款VR实训软件能够模拟真实的燃气轮机故障诊断场景&…

JVM---理解jvm之对象已死怎么判断?

目录 引用计数算法 什么是引用 可达性分析算法&#xff08;用的最多的&#xff09; 引用计数算法 定义&#xff1a;在对象中添加一个引用计数器&#xff0c;每当有一个地方引用它时&#xff0c;计数器值就加一&#xff1b;当引用失效时&#xff0c;计数器值就减一&#xff1…

利用python实现批量登录网络设备进行日常巡检

利用python实现批量登录网络设备 实现ensp与物理机互通ensp 配置配置网络设备远程登录 用python实现批量登录常见问题 通过阅读本文可以学习自动化运维相关知识&#xff0c;本文章代码可以直接使用&#xff0c;通过批量登录功能后&#xff0c;可以按照自己意愿进行功能更改与完…

CentOS7最小化安装使用KVM虚拟化

说明&#xff1a;本文初衷在于记录一次实战经验&#xff0c;以便后续参考&#xff0c;不具有任何权威作用&#xff0c;如若对你有帮助深感荣幸&#xff01; 一、环境安装 CentOS Linux release 7.9.2009 (Core)【不带GUI】Xshell 6Xmanager 6 # 执行 export DISPLAY客户端机器…

MongoDB数据库

目录 一、概述 二、安装 三、目录结构 四、MongoDB数据库操作 五、MongoDB数据库备份 一、概述 mongodb是一个nosql数据库&#xff0c;它有高性能、无模式、文档型的特点。是nosql数据库中功能最丰富&#xff0c;最像关系数据库的。数据库格式为BSON 相关概念 实例&…

计算机网络-物理层(二)- 传输方式

计算机网络-物理层&#xff08;二&#xff09;- 传输方式 串型传输与并行传输 串行传输:是指数据是一个比特一个比特依次发送的&#xff0c;因此在发送端和接收端之间&#xff0c;只需要一条数据传输线路即可 并行传输:是指一次发送n个比特而不是一个比特&#xff0c;因此发送…

电脑ip地址怎么改 ip地址怎么改到别的城市

一、ip地址怎么改到别的城市 1.ip地址怎么改到别的城市&#xff0c;1、重启WIFI路由设备 一般手机或电脑在家或公司上网时都是接入到路由器的WIFI网络,再由路由器分配上网IP地址,如果要更换上网IP那么重启路由器设备后,路由器会向网络运营商进行宽带的重新拨号,此时手机或电脑设…

Gin安装解决国内go 与 热加载

get 方式安装超时问题&#xff0c;国内直接用官网推荐的下面这个命令大概率是安装不成功的 go get -u github.com/gin-gonic/gin 可以在你的项目目录下执行下面几个命令&#xff1a; 比如我的项目在E:\Oproject\zl cmd E:\Oproject\zl>就在目录下执行 go env -w GO111…

推断统计(配对样本t检验)

根据题目我们也可以看出配对样本 t 检验是用来检验两配对正态总体的均值是否存在显著差异的一种假设检验方法&#xff0c;虽然是两组数据但是其来自同一部分个体在两个时间段内的测试数据&#xff0c;是同一部份个体&#xff01; 进行配对样本 t 检验之后也是分别做出原假设和备…

i18n 配置vue项目中英文语言包(中英文转化)

一、实现效果 二、下载插件创建文件夹 2.1 下载cookie来存储 npm install --save js-cookienpm i vue-i18n -S 2.2 封装组件多页面应用 2.3 创建配置语言包字段 三、示例代码 3.1 main.js 引用 i18n.js import i18n from ./lang// 实现语言切换:i18n处理element&#xff0c…

【计算机视觉|生成对抗】改进的生成对抗网络(GANs)训练技术

本系列博文为深度学习/计算机视觉论文笔记&#xff0c;转载请注明出处 标题&#xff1a;Improved Techniques for Training GANs 链接&#xff1a;[1606.03498v1] Improved Techniques for Training GANs (arxiv.org) 摘要 本文介绍了一系列应用于生成对抗网络&#xff08;G…

数据库设计

一 需求分析(requirement analysis) 根据用户对系统的使用需求&#xff0c;明确系统需要的数据和它们如何使用。也是整个设计过程的基础。通过详细调查现实世界要处理的对象&#xff0c;充分了解原系统工作概况&#xff0c;明确用户的各种需求&#xff0c;然后在此基础上确定新…

STM32F103C8T6蓝牙OTA教程

一、准备与简介 1. 准备材料 文章使用的软硬件并不局限&#xff0c;下述仅作参考&#xff0c;文章的所有使用的工程可在文末获取&#xff08;百度网盘Github&#xff09; 1&#xff09;STM32F103C8T6核心板 2&#xff09;下载器&#xff08;PWLINK&#xff09; 3&#xff0…

Linux文件属性查看和修改学习

一、基本属性 1、看懂文件属性&#xff1a; Linux系统是一种典型的多用户系统&#xff0c;不同的用户处于不同的地位&#xff0c;拥有不同的权限。为了保护系统的安全性&#xff0c; Linux系统对不同的用户访问同一文件&#xff08;包括目录文件&#xff09;的权限做了不同的…

Spark(39):Streaming DataFrame 和 Streaming DataSet 输出

目录 0. 相关文章链接 1. 输出的选项 2. 输出模式(output mode) 2.1. Append 模式(默认) 2.2. Complete 模式 2.3. Update 模式 2.4. 输出模式总结 3. 输出接收器(output sink) 3.1. file sink 3.2. kafka sink 3.2.1. 以 Streaming 方式输出数据 3.2.2. 以 batch …