抖音集团基于 Apache Doris 的实时数据仓库实践

作者:字节跳动数据平台

在直播、电商等业务场景中存在着大量实时数据,这些数据对业务发展至关重要。而在处理实时数据时,我们也遇到了诸多挑战,比如实时数据开发门槛高、运维成本高以及资源浪费等。

此外,实时数据处理比离线数据更复杂,需要应对多流 JOIN、维度表变化等技术难题,并确保系统的稳定性和数据的准确性。本文将分享基于 Apache Doris 的实时数仓架构在不同业务场景的实践经验,以及该架构带来的收益。

存储实时数仓架构背景

首先介绍存储实时数仓架构的背景。

01 实时数据数仓链路

实时数据数仓链路.png

目前实时数据主要使用 Flink 作为中转工具,Kafka 作为 Flink 的逻辑表,实现数据在不同数据分层之间的流转。Kafka 本身没有逻辑表,无法像 Hive 那样清晰地进行开发过程。

实时数据和离线数据的内容生产量级会有比较大落差,主要原因在于实时数据开发成本、运维成本以及资源成本,尤其是前两者相较离线开发更高,因此尽管有一部分实时数据的需求,我们经常会想办法将其降级。

02 Flink 数仓问题与挑战

  • 开发门槛高:Flink 是有状态的一套数据流引擎,具有状态的增量特性,需要更清晰的底层认知,特别是在多流 JOIN 等场景下。增量的状态,导致无法像 Hive 那样把全量的数据状态存到内存里,进一步进行简单的数据操作。

    实时数据涉及的数据存储量较大,需要使用多种计算引擎,如 OLTP 引擎(MySQL、PostgreSQL)、OLAP 引擎(ClickHouse、Doris)、KV 存储(Abase、Tier、Redis)等,以适应不同的计算需求,这也增加了开发难度。另外,由于其增量状态,也让测试变得困难。

  • 开发运维成本高:复杂的多流 JOIN 操作经常需要存储大量状态数据,这可能会导致稳定性问题,尤其是在处理连续直播等情况下。

    在多个业务线的平台中,一些发展中的业务线由于需要不断进行业务创新,业务口径随之变化,而 Flink 作为增量状态存储的系统,遇到状态不可恢复的问题是不可避免的。当数据口径变更时,直接上线可能会由于状态结构改变而无法进行数据恢复。

  • 资源浪费:在实时场景中,资源浪费是很常见的情况,虽然资源浪费不是核心问题,但是目前各个公司都有治理的需求。

    对于一个任务来说,比如在大促活动刚开始的时候,会有大的潮汐洪峰,但过了几分钟之后,流量会迅速地递减退变,为了保证稳定性,我们需要保持高资源位,来稳定地进行 24x7 的运行,这就会导致资源浪费。

03 目标与愿景

我们希望找到一个架构,能在三个方面做出提升:

  • 降低开发门槛,为终极目标。 通过降低门槛,提升效率,希望能够达到类似于离线开发一样的效率。同时,解决实时领域复杂的方案设计问题,比如多表 JOIN 和维度表实时变更。维表实施变更之后,相应的值如何迅速进行更正,这也是一大业务痛点。从而更好地应对创新业务口径经常变更的情况。
  • 提高开发效率,只需开发 SQL,无需关心底层运维设置,实现单一职责化。由于 Flink 状态中间数据不可查,如何进行更快速更高效的数据测试也非常关键,毕竟不是把数据开发好就够了,还要保障数据的准确性。实时数据的错误,可能会造成主播、电商或平台三方的资损。
  • 资源成本节省。 Flink 任务是常驻任务会有大量的资源消耗,我们希望通过架构优化降低资源成本。

存储实时数仓架构体系

接下来介绍实时数仓的运转方式。

01 存储实时数仓架构

存储实时数仓架构.png

上图中简明地展示了目前运行架构。

左侧是我们所采用的一套已较为成熟的架构,主要用于一些成熟业务。数据存储方面使用了 Kafka 的逻辑表形式。虽然这种逻辑表缺少字段和约束,并且数据的可查性也不是很好,但却负责了一半以上的实时数据开发。

右侧的架构则更为简单,类似于离线 Hive,采用了 Doris 存储架构。通过 OLAP 引擎和秒级调度,实现了数据分层,可以复用离线开发的内容,使实时数据开发变得更加清晰简洁。整体架构的核心是调度引擎(秒级调度)加上 OLAP 引擎。

02 存储实时数仓架构生态

存储实时数仓架构生态.png

这个架构看似简单,但实际上有着复杂的生态系统在支撑。

这套架构已经运行多年,但仍需要相应的生态系统配合,比如数据质量检查平台和数据质量保障措施。另外,数据治理也是必不可少的,特别是在处理大量数据表、数据模型和数据任务时。

应用数据开发方面,可以通过 Doris 引擎进行数据生产,但如何对外提供数据则需要考虑不同的透出形式。我们通过数仓表直接透出,也可以通过 ETL 数据集成将数据导入到 KV 存储,以满足一些高 QPS 的场景需求。

此外,从数仓模型、数据开发、开发规范到指标体系的建设也是必要的。

这套架构在宏观上与离线系统有类似之处。

03 一站式研发平台

 一站式研发平台.png

我们提供了一站式的数据开发服务。首先是注册数据源,然后通过简单的 SQL 语句即可轻松地进行任务开发。

开发完成后,通过一些配置,实现版本管理、上线、Review、数据回溯、告警、大盘等一系列操作。

04 调度引擎挑战

实时生态系统非常复杂,实践中会遇到一些困难。

实时场景核心有两套引擎:调度引擎和 OLAP 引擎。

调度引擎面临的挑战主要有以下三方面:

4-1: T+0 调度支持

原本我们计划直接复用离线调度引擎,但实际落地时发现了一些问题。比如,离线调度通常是 T+1 的,业务时间的替换可能是不符合准实时开发要求的,准实时或实时开发需要 T+0 的日期参数,一些重跑和依赖调度能力等都需要重新构建。

T+1 离线调度对延时的容忍度较高,稍微延迟几分钟是可以接受的,并且离线调度引擎会采用打散任务的策略来处理这种情况。比如,在 0 点的时候,系统会将一些任务进行打散,部分任务稍晚执行,这在离线环境中非常常见。

但是,在实时场景下,这种延迟是不允许的。另外,实时场景和离线场景的数据量差异很大,实例存储的数据量可能有两、三个数量级以上的差距。

比如天级任务每天只有一个实例,小时级任务有几十个,而分钟级任务则有上千个实例,相差了两个数量级以上了,而秒级任务相差的数量级会更大。这种数据量的差异对存储和调度造成挑战。

4-2: 实时数据容易晚到

因为要处理当天或小时内的数据,而数据的到达可能会有延迟。在这里,类似 Flink 中的 watermark 概念变得非常重要,调度引擎需要支持类似的机制来容忍数据的晚到,并保证数据的完整性。

4-3: 调度间隔

这是一个非常严格的要求,比如 15 秒间隔的任务可能因数据量的关系需要 16 秒完成,这也是需要解决的难题之一。

针对 T+0 调度中的三个难题,我们采取了相应的解决方案

  • 首先,支持了 T+0 参数替换功能,提供了高级的运算法则,可以进行秒级或分钟级的时间偏移。
  • 其次,对调度引擎进行了深度改造,实现了水平扩展,支持多个 scheduler,使得调度引擎可以横向无限扩展。
  • 调度间隔。这是一个非常严格的要求,比如 15 秒间隔的任务可能因数据量的关系需要 16 秒完成,这也是需要解决的难题之一。
  • 另外,针对数据容易晚到的问题,我们采取了数据补偿机制,即定时进行数据补偿操作来确保数据的完整性。例如,对于一个分钟级时效的任务,每分钟执行一次后,我们会在数据可能晚到的情况下进行定时补偿,以覆盖完整数据。

针对任务跑的时间长于调度间隔的问题,我们提出了 MisFire 处理策略,这个策略源自于 Quartz 的一些思想。 针对不同的情况,有多种处理方式。最简单的是任务并行,这也是离线开发的默认方式。

另外一种方式是任务串行,特别适用于实时数据场景,避免数据乱序导致数据不准确。

还有一种方式是数据跳过,如果出现任务积压的情况,系统会自动跳过一些任务实例,以确保任务能够相对健康地运行。比如说,当任务积压了几百个实例时,下一次运行时会将相应的实例 Kill 掉,然后继续运行最新的实例。具体的处理方式需要根据业务场景来确定。

05 Doris 引擎挑战

前面介绍了调度引擎面临的挑战和解决方案,接下来看一下 OLAP 引擎。OLAP 引擎主要面临以下三方面挑战:

  • 跨机房容灾能力:准实时领域跟服务端的一些情况有些类似,即在稳定性方面有着高的要求。一旦出现主播跟播时在线人数突然跳零,就会导致主播的一些话术无法及时组织和应变,进而产生严重的资损。

    因此,我们需要跨机房容灾的能力,来应对单机房故障带来的整体服务不可用,以及实时数据无法对外提供的问题。

  • 读写隔离能力:这涉及到 Doris 平台上的操作。我们同时进行数据的生产和消费,但在数据最初阶段,缺乏有效的隔离措施,而这对数据的稳定性是至关重要的。

  • 跨集群 ETL 能力:我们对不同业务场景有着严格的重要等级要求,会将数据分散到多个集群中,比如 A 业务集群、B 业务集群和 C 业务集群等。

B 或 C 都是交易类的依赖订单流的数据,会有公共数仓的建设,这些公共数仓的建设如果无法实现从 B 集群同步到 C 集群,就会导致不同业务线或集群之间的重复建设,无论从人力还是资源方面都会给我们带来负担。

特别是对于涉及交易类数据的集群,这种同步工作显得尤为重要。因此,跨集群 ETL 是我们数仓建设中非常核心的一个能力。

 Doris 引擎挑战.png

针对上述问题,一一进行解决。

  • 首先,关于多机房容灾能力的问题,在三个机房中每个机房都有一张表的情况下,每张表有三个副本,其中一个副本分摊在一个机房,从生产端的 MQ 数据写入到 Doris 后,经过中间加工端再到消费端,最终形成了数据服务的全链路高可用性。在单个机房挂掉时,无论是生产还是消费,都会有同机房优先和跨机房降级策略来保障高效性和稳定性。
  • 读写隔离机制较为简单,将读写流量分流到不同的集群组上。
  • 跨集群读写采用两种机制:一种是借助 Spark 将数据源格式读到 Yarn 集群,再同步到不同集群;另一种是在 Doris 内部使用 Doris 原生能力将集群数据同步到另一个集群。两种方式各有优势,Spark on Doris 相对更加稳定且不消耗 Doris 计算资源,而第二种方案效率更高,根据业务场景和时效性诉求选择不同的跨集群读写方式。

存储实时数仓架构实践

接下来简要介绍一些实际的应用场景。

01 Flink 链路

存储实时数仓架构实践-Flink.png

Flink 链路如上图所示,第一条链路看起来比较复杂,需要执行多条流的 JOIN 操作。

使用基于存储的实时数仓架构后,整体结构变得更加简洁,虽然数据来源仍为多条流,但实际上在一张表里进行了 JOIN 操作。整体涉及了四五个甚至更多流式 JOIN,流式 JOIN 复杂度大家都比较了解。不过,实际负责的 JOIN 可能仅有三个。开发成本和后期维护成本都大幅降低。

02 实时榜单解决方案

另一个是实时榜单解决方案。

实时榜单解决方案.png

针对这种场景,我们进行了解决方案的抽象,并在存储数仓中实施了一个方案。

最初的方案是基于 Flink 的,出现了一些问题,于是后期迁移到了基于 Doris 的存储数仓方案。这套方案的特点是元数据定义比较清晰。

元数据由实时表从 MQ 中的字段解析而来,解析后对其进行了一些元数据定义,即对榜单场景业务逻辑进行抽象,比如会定义周期、原子指标以及如何加工这些原子指标。

另外,还定义了榜单如何进行分区,分区可以根据实体类型来确定,例如对商家、视频或直播进行排名。通过简单的配置,能够快速创建出相应的 Flink 任务。

在业务实际运营中,有许多类似的榜单场景,这样的榜单场景过多导致出现了两个问题。

首先,榜单场景过多导致任务量激增,这会给资源治理带来较多困难。特别是对于实时流处理,需要 24 小时全天候运行,任务量增加会让资源治理问题变得更加严峻。

其次,报警运维也是一个挑战,实时任务报警频率高,甚至一个任务可能随时都会产生警报。而随着任务数量的增加,报警更加频繁。此外,由于大量任务消费同一个消息队列,会放大流量,给 HDFS 带来额外负担。

另外,电商领域的大型促销活动常常伴随着长周期状态,这种长周期计算会对 Flink 的大状态稳定性产生影响,同时也使回溯变得困难。为应对这些问题,运维人员经常需要在零点进行操作,只有在这个时间点才重新计算,相对来说状态比较小,回溯压力也比较小。

实时榜单解决方案-2.png

基于上述痛点,我们将 Flink 架构迁移到了存储数仓架构,使得运维工作变得更加高效。相比 Flink,在榜单场景下资源量和报警量都有下降。并且解决了长周期计算的难题。由于状态保存在 Doris 的表中,长周期计算变得更加灵活。

存储实时数仓架构规划

最后分享我们在未来要做的一些工作。

首先是对解决方案的封装。我们已经封装了一个榜单业务场景,还有许多其他场景,比如 DMP、标签和中间层数据等,这些场景都可以被打包成解决方案。除了模式和方法论的封装之外,还有存储架构的封装。

在存储架构方面,不断演进自研的数据湖产品,扩展更多的存储架构。

另外是智能化运维整合,实时数据的稳定性对开发和运维人员压力是非常大的,我们希望整合一些规则和算法,实现自动化处理部分场景,剩下的做推荐化预案,从而提升 MTTR,提升故障恢复的时效性并降低成本。

以上就是本次分享的内容,谢谢大家。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/746978.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

input()函数——输入

自学python如何成为大佬(目录):https://blog.csdn.net/weixin_67859959/article/details/139049996?spm1001.2014.3001.5501 语法参考 input()函数可以提示并接收用户的输入,将所有的输入按照字符串进行处理,并返回一个字符串,input()函数的…

调频信号FM的原理与matlab与FPGA实现

平台:matlab r2021b,vivado2023.1 本文知识内容摘自《软件无线电原理和应用》 调频(FM)是载波的瞬时频率随调制信号成线性变化的一种调制方式,音频调频信号的数学表达式可以写为: Fm频率调制,载波的幅度随着调制波形…

LLM文本数据集775TB:覆盖32个领域,444个数据集

大语言模型在各领域展现出巨大潜力,其性能在很大程度上依赖于训练和测试所用的数据集。然而,目前在如何构建和优化这些数据集方面,尚缺乏统一的认识和方法论。下面从五个方面整合和分类了LLM数据集的基本内容:预训练语料库、指令微…

【第14章】探索新技术:如何自学SD3模型(找官方资料/精读/下载/安装/3款工作流/效果测试)ComfyUI基础入门教程

近期,也就是2024年6月12日,StabilityAI开源了最新的SD3模型的2B版本,而神奇的是,ComfyUI早在6月11号就已经适配了SD3!相比之下,SD WebUI 的更新速度却远远落后... 所以,如果想要尝试一些AI绘画领域的新技术,ComfyUI是一个非常值得投入时间学习的工具。 这节课,我们就…

什么是API?如何进行API对接?

目录 一、API和API对接的定义 二、API接口的应用场景 三、为什么需要API对接 四、如何进行API对接 GET请求 POST请求 五、API对接的注意事项 在这个数字化时代,API像一把万能钥匙,让数据流动起来,创造出无限可能。本文旨在介绍API及其…

分享一个 MySQL 简单快速进行自动备份和还原的脚本和方法

前言 数据备份和还原在信息技术领域中具有非常重要的作用,不论是人为误操作、硬件故障、病毒感染、自然灾害还是其他原因,数据丢失的风险都是存在的。如果没有备份,一旦数据丢失,可能对个人、企业甚至整个组织造成巨大的损失。 …

6毛钱SOT-23封装28V、400mA 开关升压转换器,LCD偏置电源和白光LED应用芯片TPS61040

SOT-23-5 封装 TPS61040 丝印PHOI 1 特性 • 1.8V 至 6V 输入电压范围 • 可调节输出电压范围高达 28V • 400mA (TPS61040) 和 250mA (TPS61041) 内部开关电流 • 高达 1MHz 的开关频率 • 28μA 典型空载静态电流 • 1A 典型关断电流 • 内部软启动 • 采用 SOT23-5、TSOT23…

【会议征稿,IEEE出版】第三届机器人、人工智能与智能控制国际会议(RAIIC 2024,7月5-7)

第三届机器人、人工智能与智能控制国际会议(RAIIC 2024)将于2024年7月5-7日中国绵阳举行。 RAIIC 2024是汇聚业界和学术界的顶级论坛,会议将邀请国内外著名专家就以传播机器人、人工智能与智能控制领域的技术进步、研究成果和应用做专题报告…

呼叫中心项目需要关注什么?

呼叫中心系统项目合作的关键要素可以归纳如下: 1、明确合作目标和需求: 首先,需要明确呼叫中心系统项目的合作目标,例如提高客户满意度、降低成本、提升服务效率等。 同时,需要详细分析项目的具体需求,包括…

【Linux】线程Thread

🔥博客主页: 我要成为C领域大神🎥系列专栏:【C核心编程】 【计算机网络】 【Linux编程】 【操作系统】 ❤️感谢大家点赞👍收藏⭐评论✍️ 本博客致力于知识分享,与更多的人进行学习交流 ​ ​ 线程概述 …

期货交易记录20240626

文章目录 期货交易系统构建第一步、选品第二步、心态历练第三步、开仓纪律第四步、持仓纪律第五步、接下来的计划 2024年6月26号,开始写期货交易的第四篇日记。 交易记录:做了一笔纯碱的多单,在回撤了400个点左右后,看到企稳信号后…

标签接口开发(富含完整CRUD开发流程)

文章目录 1.easyCode生成CRUD1.生成代码2.查看代码3.调整代码1.SubjectLabelDao.xml发现生成的select语句不带逗号!!!1.解决方法:2.entity.java.vm3.dao.java.vm4.Mapper.xml.vm 2.重新生成代码3.SubjectLabelDao.java 删除Pageab…

ArkTS开发系列之Web组件的学习(2.9)

上篇回顾:ArkTS开发系列之事件(2.8.2手势事件) 本篇内容: ArkTS开发系列之Web组件的学习(2.9) 一、知识储备 Web组件就是用来展示网页的一个组件。具有页面加载、页面交互以及页面调试功能 1. 加载网络…

【Java】Java序列化和反序列化

人不走空 🌈个人主页:人不走空 💖系列专栏:算法专题 ⏰诗词歌赋:斯是陋室,惟吾德馨 # Java中的序列化和反序列化 在Java中,序列化是将对象的状态写入字节流的机制。它主要用于Hibernate…

国家自然科学基金标书大全(2002-2024)

数据来源:在20世纪80年代初,为了促进中国的科技体制革新并改革科研资金分配机制,中国科学院的89位院士联名向党和国家领导人提出建议,设立了国家自然科学基金的设立。国自然基金自创立以来,根据国家发展科学技术方针、…

可以一键生成热点营销视频的工具,建议收藏

在当今的商业环境中,热点营销已经成为了一种非常重要的营销策略。那么,什么是热点营销呢?又怎么做热点营销视频呢? 最近高考成绩慢慢公布了,领导让结合“高考成绩公布”这个热点,做一个关于企业或产品的营销…

力扣:59. 螺旋矩阵 II(Java,模拟)

目录 题目描述示例 1:代码实现 题目描述 给你一个正整数 n ,生成一个包含 1 到 n2 所有元素,且元素按顺时针顺序螺旋排列的 n x n 正方形矩阵 matrix 。 示例 1: 输入:n 3 输出:[[1,2,3],[8,9,4],[7,6,5…

想布局短视频赛道,云微客AI矩阵系统告诉你诀窍

随着人工智能技术的不断发展,越来越多的企业和个人创作者开始意识到智能化的重要性。而现阶段,随着短视频市场的膨胀扩大,批量成片、智能创作、定时发布是当下重要的趋势,企业如果想在短视频赛道分一杯羹,智能化的平台…

七天速通javaSE:第二天 基础:标识符与数据类型

文章目录 前言一、注释与标识符1. 注释2. 标识符2.1 标识符2.2 关键字 二、数据类型1. 语言类型2. 数据类型2.1 基本数据类型2.2引用数据类型 三、类型转换1. 自动转换2. 强制转换(不建议) 四、代码规范 前言 今天将学习Java语法的基础,认识…

自然语言处理——英文文本预处理

高质量数据的重要性 数据的质量直接影响模型的性能和准确性。高质量的数据可以显著提升模型的学习效果,帮助模型更准确地识别模式、进行预测和决策。具体原因包括以下几点: 噪音减少:高质量的数据经过清理,减少了无关或错误信息…