【机器学习】机器学习的基本分类-监督学习(Supervised Learning)

监督学习是一种通过已有的输入数据(特征)和目标输出(标签)对模型进行训练的机器学习方法,旨在学到一个函数,将输入映射到正确的输出。


1. 监督学习概述

监督学习需要:

  • 输入数据(特征):X,如图片、文本、数值等。
  • 输出标签y,即目标值,如图片的分类标签、房价等。
  • 目标:通过训练模型,使其能够预测新数据的标签。

公式表示
从训练数据 (X, y) 中学到一个函数 f(x),使得对于新输入 x',预测值 f(x') 与真实值 y' 尽可能接近。


2. 常见任务类型

分类任务

目标:预测离散类别标签。

  • 示例:垃圾邮件检测(垃圾邮件/非垃圾邮件)、图片分类(猫/狗/鸟)。
  • 常见评价指标:准确率(Accuracy)、精确率(Precision)、召回率(Recall)、F1 分数等。
回归任务

目标:预测连续值。

  • 示例:房价预测、气温预测。
  • 常见评价指标:均方误差(MSE)、平均绝对误差(MAE)、决定系数(R²) 等。

3. 数据准备与预处理

3.1 数据收集
  • 数据来源:数据库、日志文件、公开数据集(如 Kaggle)。
  • 注意:确保数据多样性和质量。
3.2 数据清洗
  • 处理缺失值:均值填充、中位数填充或删除缺失数据。
  • 处理异常值:通过箱线图、标准差等方法检测并处理。
3.3 特征工程
  • 标准化/归一化:对数值型特征进行标准化,使其均值为 0,标准差为 1。
  • 编码:对类别型特征用独热编码(One-Hot Encoding)或标签编码(Label Encoding)。
  • 特征选择:删除低相关性或多余的特征,提高模型性能。
3.4 数据划分
  • 划分为训练集、验证集和测试集(例如 60%/20%/20%)。

4. 模型训练与评估

4.1 模型选择

根据任务选择合适的算法,如:

  • 分类:逻辑回归、支持向量机(SVM)、决策树、随机森林等。
  • 回归:线性回归、岭回归、Lasso 回归、梯度提升树(GBDT)等。
4.2 训练模型

通过优化损失函数(如均方误差、交叉熵)调整模型参数。

4.3 模型评估
  • 在验证集上评估性能,通过超参数调优(如学习率、正则化强度)优化模型。
  • 避免过拟合:使用正则化(L1/L2)、Dropout 或限制树深度等手段。

5. 常见算法及实现

以下是分类与回归常用算法的 Python 实现:

5.1 分类算法
  • 逻辑回归(Logistic Regression)
from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)

  • 支持向量机(SVM)
from sklearn.svm import SVC
model = SVC(kernel='linear')
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
5.2 回归算法
  • 线性回归
from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
  • 梯度提升树(GBDT)
from sklearn.ensemble import GradientBoostingRegressor
model = GradientBoostingRegressor()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)

6. 案例分析

案例 1:分类问题(垃圾邮件检测)
  1. 数据:下载带有邮件内容及是否垃圾的标注数据集。
  2. 特征提取:对文本数据进行向量化(如 TF-IDF)。
  3. 模型训练:使用逻辑回归模型。
  4. 评估:计算准确率、F1 分数。
案例 2:回归问题(房价预测)
  1. 数据:房屋面积、卧室数量、地理位置等特征。
  2. 预处理:标准化数值型特征,编码类别型特征。
  3. 模型训练:使用随机森林回归模型。
  4. 评估:计算 MSE 和 R²。

7. 监督学习的挑战与改进

  1. 过拟合与欠拟合

    • 解决过拟合:增加数据量、使用正则化、减少模型复杂度。
    • 解决欠拟合:增加特征、使用更复杂模型。
  2. 数据不平衡

    • 分类问题中类别分布不均。
    • 解决方法:采样技术(过采样/下采样)、使用 F1 分数评估。
  3. 噪声数据与异常值

    • 影响模型性能。
    • 解决方法:清洗数据、使用稳健算法。
  4. 模型解释性

    • 如深度学习模型不易解释。
    • 解决方法:使用可解释性工具(如 SHAP、LIME)。

8. 工具与框架

  1. 数据预处理:pandas, numpy
  2. 机器学习:scikit-learn, xgboost, lightgbm
  3. 可视化:matplotlib, seaborn

通过动手实践小项目(如图片分类或简单预测任务),可以快速理解和掌握监督学习的基本原理和应用技巧!如果有具体需求,我可以进一步提供代码和案例指导。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/924214.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

图书系统小案例

目前就实现了分页查询,修改,删除功能 这个小案例练习到了很多技能,比如前后端交互、异步请求、三层架构思想、后端连接数据库、配置文件、基础业务crud等等 感兴趣的小伙伴可以去做一个试试 准备工作 1、使用maven构建一个web工程 打开i…

延时系统建模,整数延时与分数延时,连续传函与离散传函,Pade近似与Thiran近似,Matlab实现

连续传递函数 严格建模:指数形式 根据拉普拉斯变换的性质, [ f ( t ) ↔ F ( s ) ] ⇔ [ f ( t − t 0 ) ↔ e − s t 0 F ( s ) ] \left[ {f\left( t \right) \leftrightarrow F\left( s \right)} \right] \Leftrightarrow \left[ {f\left( {t - {t_0…

3.14MayBeSomeStack

栈指针是sp 静态数据在内存中位置不改变 码距就是相邻两个合法的数据之间的差距,如果为2的话,相邻两个合法的数据之间存在一个冗余的数据,这个数据肯定是出错的,但是无法判断是哪个合法的数产生的; 如果码距是3的话&…

NLP 2、机器学习简介

人生的苦难不过伏尔加河上的纤夫 —— 24.11.27 一、机器学习起源 机器学习的本质 —— 找规律 通过一定量的训练样本找到这些数据样本中所蕴含的规律 规律愈发复杂,机器学习就是在其中找到这些的规律,挖掘规律建立一个公式,导致对陌生的数…

springboot视频网站系统的设计与实现(代码+数据库+LW)

摘 要 使用旧方法对视频信息进行系统化管理已经不再让人们信赖了,把现在的网络信息技术运用在视频信息的管理上面可以解决许多信息管理上面的难题,比如处理数据时间很长,数据存在错误不能及时纠正等问题。 这次开发的视频网站系统管理员功…

探索Python网页解析新纪元:requests-html库揭秘

文章目录 **探索Python网页解析新纪元:requests-html库揭秘**1. 背景介绍:为何选择requests-html?2. requests-html库是什么?3. 如何安装requests-html库?4. 五个简单的库函数使用方法4.1 发起HTTP请求4.2 解析HTML内容…

DataWhale—PumpkinBook(TASK05决策树)

课程开源地址及相关视频链接:(当然这里也希望大家支持一下正版西瓜书和南瓜书图书,支持文睿、秦州等等致力于开源生态建设的大佬✿✿ヽ(▽)ノ✿) Datawhale-学用 AI,从此开始 【吃瓜教程】《机器学习公式详解》(南瓜…

爱尔兰杀菌剂数据分析_1

前言 提醒: 文章内容为方便作者自己后日复习与查阅而进行的书写与发布,其中引用内容都会使用链接表明出处(如有侵权问题,请及时联系)。 其中内容多为一次书写,缺少检查与订正,如有问题或其他拓展…

捉虫笔记(七)-再探谁把系统卡住了

捉虫笔记(七)-再探谁把系统卡住 1、内核调试 在实体物理机上,内核调试的第一个门槛就是如何建立调试链接。 这里我选择的建立网络连接进行内核调试。 至于如何建立网络连接后续文章再和大家分享。 2、如何分析 在上一篇文章中,我们…

linux(redhat8)如何安装mysql8.0之rpmtar双版本(最新版)(内网)(离线)

一.环境 系统版本:Red Hat 8.5.0-20 Java环境:build 1.8.0_181-b13 MYSQL:8.x版本 二、查看内核版本 #查看内核版本,根据内核版本下载对应的安装包 cat /proc/version 三、安装方式 一、rpm包方式 一、下载安装包 1. 登录网…

【WRF后处理】WRF模拟效果评价及可视化:MB、RMSE、IOA、R

【WRF后处理】模拟效果评价及可视化 准备工作模型评价指标Python实现代码Python处理代码:导入站点及WRF模拟结果可视化图形及评价指标参考在气象和环境建模中(如使用 WRF 模型进行模拟),模型性能评价指标是用于定量评估模拟值与观测值之间偏差和拟合程度的重要工具。 本博客…

深度学习基础2

目录 1.损失函数 1.1 线性回归损失函数 1.1.1 MAE损失 1.1.2 MSE损失 1.1.3 SmoothL1Loss 1.2 CrossEntropyLoss 1.3 BCELoss 1.4. 总结 2.BP算法 2.1 前向传播 2.2 反向传播 2.2.1 原理 2.2.2. 链式法则 2.4 重要性 2.5 案例 2.5.1 数据准备 2.5.2 神经元计算…

STM32的CAN波特率计算

公式: CAN波特率 APB总线频率 / (BRP分频器 1)/ (SWJ BS1 BS2) SWJ一般为1。 例如STM32F407的,CAN1和CAN2都在在APB1下,频率是42000000 如果想配置成1M波特率,则计算公式为:

⭐ Unity 资源管理解决方案:Addressable_ Demo演示

一、使用Addressable插件的好处: 1.自动管理依赖关系 2.方便资源卸载 3.自带整合好的资源管理界面 4.支持远程资源加载和热更新 二、使用步骤 安装组件 1.创建资源分组 2.将资源加入资源组 3.打包资源 4.加载资源 三种方式可以加载 using System.Collections…

uniapp实现APP版本升级

App.vue 直接上代码 <script>export default {methods: {//APP 版本升级Urlupload() {// #ifdef APP-PLUSplus.runtime.getProperty(plus.runtime.appid, (info) > {// 版本号变量持久化存储getApp().globalData.version info.version;this.ToLoadUpdate(info.versi…

spark 写入mysql 中文数据 显示?? 或者 乱码

目录 前言 Spark报错&#xff1a; 解决办法&#xff1a; 总结一下&#xff1a; 报错&#xff1a; 解决&#xff1a; 前言 用spark写入mysql中&#xff0c;查看中文数据 显示?? 或者 乱码 Spark报错&#xff1a; Sat Nov 23 19:15:59 CST 2024 WARN: Establishing SSL…

欧科云链研究院:比特币还能“燃”多久?

出品&#xff5c; OKG Research 作者&#xff5c;Hedy Bi 本周二&#xff0c;隔夜“特朗普交易” 的逆转趋势波及到比特币市场。比特币价格一度冲高至约99,000美元后迅速回落至93,000美元以下&#xff0c;最大跌幅超6%。这是由于有关以色列和黎巴嫩有望达成停火协议的传闻引发…

27加餐篇:gRPC框架的优势与不足之处

gRPC作为一个现代的、开源的远程过程调用(RPC)框架,在多个方面都展现了其优雅之处,同时也存在一些不足之处。这篇文章我们就相对全面的分析一下gRPC框架那些优雅的地方和不足的地方。 优雅的地方 gRPC作为一个RPC框架,在编码、传输协议已经支持多语言方面都比较高效,下…

Spring MVC练习(前后端分离开发实例)

White graces&#xff1a;个人主页 &#x1f649;专栏推荐:Java入门知识&#x1f649; &#x1f439;今日诗词:二十五弦弹夜月&#xff0c;不胜清怨却飞来&#x1f439; ⛳️点赞 ☀️收藏⭐️关注&#x1f4ac;卑微小博主&#x1f64f; ⛳️点赞 ☀️收藏⭐️关注&#x1f4…

重构项目架构

前言 我们上篇文章对整个项目进行一个整体的规划&#xff0c;其中对于APP类规划了类&#xff0c;本篇文章我们就来实现这个规划&#xff1b; class App {//加载页面constructor() {}//获取位置_getPosition() {}//接受位置_loadMap() {}//在地图上点击展现表单_showForm() {}/…