ZGC垃圾收集的主要流程

值得说明的是,在执行就地迁移时,ZGC 必须首先压缩指定为对象迁移区域内的对象,这可能会对性能产生负面影响。增加堆大小可以帮助 ZGC 避免使用就地迁移。

图片

如上图,ZGC 的工作流程主要包括以下几个步骤:

  • (STW)标记开始

标记阶段开始的同步点,只会执行一些小的操作,例如设置一些标记位和确定全局颜色。

值得说明的是,在 JDK 16 之前,该阶段的耗时和 GC Roots(静态变量与线程栈中的局部变量)的数量成正比。因此在 JEP 376 中引入了一种新的算法,将扫描线程栈的操作转移到并发阶段,从而显著减少了该阶段的耗时。

  • (并发)标记与重映射

在这个并发阶段,ZGC 将遍历整个对象图,并标记所有对象(根据 GC 周期不同,设置 Marked0 或 Marked1 标记)。同时,将上一个 GC 周期中尚未被重映射的对象(标记仍为 Marked1 或 Marked0)进行重映射。

  • (STW)标记结束

标记阶段结束的同步点,会处理一些边界情况。

  • (并发)迁移准备

该阶段会处理弱引用、清理不再使用的对象,并筛选出需要迁移的对象(Relocation Set)。

  • (STW)迁移开始

迁移阶段开始的同步点,通知所有涉及到对象迁移的线程。

同样的,在 JDK 16 引入 JEP 376 之后,该阶段的耗时不再与 GC Roots 的数量成正比。

  • (并发)迁移

该阶段会并发地迁移对象,压缩堆中的区域,以释放空间。迁移后的对象的新地址会记录到转发表(Forwarding Table)中,用于后续重映射时获取对象的新的地址;该转发表是一个哈希表,使用堆外内存,每个区域分别有一个转发表。

可以看到,在一个 GC 周期中,STW 的阶段和并发阶段交替执行,并且绝大多数操作均在并发阶段执行。

示例

为了更好地理解 ZGC 的工作原理,下面通过一个例子来展示 ZGC 工作各阶段执行的操作。

1. 【GC 开始】初始状态

图片

  • 上图中为 GC 开始前 Java 堆的状态:共有 3 个区域,9 个对象。

  • 所有新创建的对象初始颜色均为 Remapped。

2. 【标记阶段】从 GC Roots 开始遍历,标记所有存活的对象

图片

  • 每次 GC 之间的标记阶段轮流使用 Marked0 与 Marked1,本次使用 Marked0。

  • GC Roots(例如,线程栈中引用的对象,静态变量等)为每次标记的起点,所有被 GC Roots 引用的对象都应被认为是存活的;同样的,如果未被标记(颜色仍为 Remapped),则认为可被回收。

3. 【迁移准备阶段】选择需要压缩的区域,并创建转发表

图片

  • 检查各区域发现,区域 1 与区域 2 存在需要回收的对象,将它们加入迁移集合。

  • 并为所有迁移集合中的区域创建转发表。

4. 【迁移阶段】遍历所有对象,迁移其中处于迁移集合中的对象

图片

a. 遍历到对象 1、2,发现它们位于区域 0(不在迁移集合中),无需迁移,仅将颜色恢复为 Remapped。

b. 遍历到对象 4、5、7,均在迁移集合中,需要迁移。

  1. 创建(或复用)一个新的区域——区域 3,用于放置这 3 个对象。

  2. 依次将这 3 个对象迁移至新的区域,并将它们新的地址记录在转发表中。

  3. 将这 3 个对象的颜色恢复为 Remapped。

注意:

  • 迁移完成后,迁移集合中的区域 1 与区域 2 即可被复用,用于分配新的对象。但为了便于理解,图中保留了 4、5、7 这 3 个对象的历史位置,并加了“'”号用以区分新老位置。

  • 值得注意的是,此时对象 2(对象 4')中记录的对象 5(对象 7)的地址仍为迁移前的地址,指针的颜色也仍为标记时的颜色 Marked0。

5. 【迁移后的任意时间】用户线程加载对象

图片

  • 在对象 7 迁移完成后,如果此时用户线程尝试加载对象 7,会触发读屏障(指针实际颜色 Marked0 与期望颜色 Remapped 不符,是“坏的”)。在读屏障中,会基于转发表,将对象 7 的地址重映射对象 7'。

6. 【下一次 GC 标记阶段】重映射所有未被用户线程加载过的对象

图片

  • 在下一次 GC 的标记阶段,会使用 Marked1 标记出所有存活对象。

  • 与此同时,发现对象 2 引用了对象 5,而对象 5 的颜色是“坏的”(对象 5 的实际颜色 Marked0 与期望颜色 Remapped 不符),会基于转发表,将对象 5 的地址重映射对象 5'。

注意:

  • 每次 GC 的 GC Roots 引用的对象可能不同,在本例中,从对象 1 与对象 4' 变成了对象 2 与对象 7'。

7. 【下一次 GC 迁移准备阶段】清理转发表

图片

  • 与之前的迁移准备阶段类似,需要确定迁移集合、创建转发表。此外,还需要将上一次 GC 的转发表删除。

参考文档

Java ZGC 深度剖析及其在构建低延迟流系统中的实践心得

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/746713.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

DVWA 靶场 SQL Injection 通关解析

前言 DVWA代表Damn Vulnerable Web Application,是一个用于学习和练习Web应用程序漏洞的开源漏洞应用程序。它被设计成一个易于安装和配置的漏洞应用程序,旨在帮助安全专业人员和爱好者了解和熟悉不同类型的Web应用程序漏洞。 DVWA提供了一系列的漏洞场…

Python+Vue+Springboot实现电脑端微信好友导入导出

主要实现思路是使用python的自动化库uiautomation进行客户端抓取联系人,vue做管理界面,springboot做后端服务。 截图如下 登录: 首页 好友导出 不足之处就是只有windows版本,mac上还不行 而且谷歌和edge浏览器的效果是最好的&a…

面试-Java线程池

1.利用Excutors创建不同的线程池满足不同场景的需求 分析: 如果并发的请求的数量非常多,但每个线程执行的时间非常短,这样就会频繁的创建和销毁线程。如此一来,会大大降低系统的效率。 可能出现,服务器在为每个线程创建…

LAMP架构的源码编译环境下部署Discuz论坛

一、LAMP架构 LAMP架构是一种常见的用于构建动态网站的技术栈 组成功能Linux(操作系统)LAMP 架构的基础,用于托管 Web 服务器和应用程序Apache(Web服务器)接收和处理客户端请求,并将静态和动态内容发送给…

20240626让飞凌的OK3588-C开发板在相机使用1080p60分辨率下预览

20240626让飞凌的OK3588-C开发板在相机使用1080p60分辨率下预览 2024/6/26 15:15 4.2.1 全编译测试 在源码路径内,提供了编译脚本 build.sh,运行该脚本对整个源码进行编译,需要在终端切换到解压 出来的源码路径,找到 build.sh 文件…

设备智能化:中国星坤线缆组件的解决方案!

在当今快速发展的电子行业中,产品小型化和成本效益是制造商追求的两大目标。中国星坤端子电缆组件以其灵活性和高效性,为电子设备制造商提供了一种理想的解决方案。本文将探讨星坤端子电缆组件的优势以及其在不同电子设备中的应用。 端子线:小…

Spring AI 实现调用openAi 多模态大模型

什么是多模态? 多模态(Multimodal)指的是数据或信息的多种表现形式。在人工智能领域,我们经常会听到这个词,尤其是在近期大型模型(如GPT-4)开始支持多模态之后。 模态:模态是指数据的一种形式,例如文本、图像、音频等。每一种形式都是一种模态。多模态:多模态就是将…

uniapp地图点击获取位置

主页面 <view class"right-content" click.stop"kilometer(item)"><view class"km">{{item.distance||0}}km</view><image src"../../static/map.png" mode""style"width: 32rpx; height: 32rpx…

Linux-笔记 OverlayFS文件系统入门

目录 前言 主要概念 工作原理 特点特性 1、上下合并 2、同名文件覆盖 3、同名目录合并 4、写时拷贝 实操入门 内核配置 挂载文件系统 验证 1、同名文件覆盖 2、同名目录合并 3、写时拷贝 1&#xff09;验证新增文件或目录 2&#xff09;验证修改文件 3&…

2024最新谷歌镜像网站入口分享

google谷歌搜索引擎最新可用镜像站列表&#xff1a;&#xff08;注意不要登录账号&#xff0c;镜像站并非谷歌官方网站&#xff09; 谷歌镜像网站1&#xff1a;https://google.cloudnative.love/ 谷歌镜像网站2&#xff1a;https://gsearch.g.shellten.top/ 谷歌镜像网站3&…

【论文阅读】--Popup-Plots: Warping Temporal Data Visualization

弹出图&#xff1a;扭曲时态数据可视化 摘要1 引言2 相关工作3 弹出图3.1 椭球模型3.1.1 水平轨迹3.1.2 垂直轨迹3.1.3 组合轨迹 3.2 视觉映射与交互 4 实施5 结果6 评估7 讨论8 结论和未来工作致谢参考文献 期刊: IEEE Trans. Vis. Comput. Graph.&#xff08;发表日期: 2019&…

螺丝扭断力试验机SJ-12

一、设备简介&#xff1a; 螺丝扭断力试验机用于测试螺丝的耐扭断力。本机将螺丝产品所受到轴向扭转力与反作用力&#xff0c;常用扭力扳手来计量。本机可对产品进行转力测、锁动测试、锁动扭力测试等多种测试方式。 二、设备使用&#xff1a; 1、将螺丝强度扭力试验机底座锁于…

天润融通:AI赋能客户体验,推动企业收入和业绩增长

“客户体验已经成为全球企业差异化的关键。人工智能与数据分析等创新技术正在加速推动企业在客户体验计划中取得成功&#xff0c;以保持领先地位”。Customer Insights & Analysis 研究经理Craig Simpson说道。 客户体验 (CX&#xff0c;Customer Experience) 是客户在与企…

STM32CubeMX与RT-Thread Studio协助使用(实现点亮LED)

1创建自己的项目 1-1选择板子 1-2生成的项目 运行一下看是否创建成功 零警告零错误 2配置STM32Cude 2-1找打如图图标点击&#xff08;CubeMX的图标&#xff09; 2-2输入自己安装的路径选中exe文件 点击Browse 找到如图选中&#xff0c;在打开&#xff08;STM32CubeMX的安装路…

变长的时间戳设计,第2版

以前的时间戳有32位&#xff0c;以秒为单位&#xff0c;231秒≈68年&#xff0c;从1970年开始&#xff0c;到2038年会出问题。 现在的时间戳有64位&#xff0c;表达范围仍然受限。 设计变长的时间戳&#xff0c;以32位为单元&#xff0c;最短有32位&#xff0c;最长有328256位…

如何使用代理 IP 防止多个 Facebook 帐户关联 - 最佳实践

在社交媒体被广泛应用的今天&#xff0c;Facebook作为全球最大的社交网络平台之一&#xff0c;面临着很多挑战&#xff0c;其中之一就是用户行为的管理和安全。 为了防止多个账户之间的关联和滥用&#xff0c;Facebook需要采取一系列措施&#xff0c;其中包括使用静态住宅代理…

【Redis】数据持久化

https://www.bilibili.com/video/BV1cr4y1671t?p96 https://blog.csdn.net/weixin_54232666/article/details/128821360 单点redis问题&#xff1a; 数据丢失问题&#xff1a;实现Redis数据持久化并发能力问题&#xff1a;搭建主从集群&#xff0c;实现读写分离故障恢复问题&…

探索顺序结构:栈的实现方式

&#x1f511;&#x1f511;博客主页&#xff1a;阿客不是客 &#x1f353;&#x1f353;系列专栏&#xff1a;渐入佳境之数据结构与算法 欢迎来到泊舟小课堂 &#x1f618;博客制作不易欢迎各位&#x1f44d;点赞⭐收藏➕关注 ​​ 一、栈的定义 栈&#xff08;Stack&#xf…

鸿蒙开发系统基础能力:【@ohos.screenLock (锁屏管理)】

锁屏管理 锁屏管理服务是OpenHarmony中系统服务&#xff0c;为锁屏应用提供注册亮屏、灭屏、开启屏幕、结束休眠、退出动画、请求解锁结果监听&#xff0c;并提供回调结果给锁屏应用。锁屏管理服务向三方应用提供请求解锁、查询锁屏状态、查询是否设置锁屏密码的能力。 说明&a…