书写自动智慧:探索Python文本分类器的开发与应用:支持二分类、多分类、多标签分类、多层级分类和Kmeans聚类

书写自动智慧:探索Python文本分类器的开发与应用:支持二分类、多分类、多标签分类、多层级分类和Kmeans聚类

文本分类器,提供多种文本分类和聚类算法,支持句子和文档级的文本分类任务,支持二分类、多分类、多标签分类、多层级分类和Kmeans聚类,开箱即用。python3开发。

  • Classifier支持算法

    • LogisticRegression
    • Random Forest
    • Decision Tree
    • K-Nearest Neighbours
    • Naive bayes
    • Xgboost
    • Support Vector Machine(SVM)
    • TextCNN
    • TextRNN
    • Fasttext
    • BERT
  • Cluster

    • MiniBatchKmeans

While providing rich functions, pytextclassifier internal modules adhere to low coupling, model adherence to inert loading, dictionary publication, and easy to use.

  • 安装
  • Requirements and Installation
pip3 install torch # conda install pytorch
pip3 install pytextclassifier

or

git clone https://github.com/shibing624/pytextclassifier.git
cd pytextclassifier
python3 setup.py install

1. English Text Classifier

包括模型训练、保存、预测、评估等

examples/lr_en_classification_demo.py:

import sys

sys.path.append('..')
from pytextclassifier import ClassicClassifier

if __name__ == '__main__':
    m = ClassicClassifier(output_dir='models/lr', model_name_or_model='lr')
    # ClassicClassifier support model_name:lr, random_forest, decision_tree, knn, bayes, svm, xgboost
    print(m)
    data = [
        ('education', 'Student debt to cost Britain billions within decades'),
        ('education', 'Chinese education for TV experiment'),
        ('sports', 'Middle East and Asia boost investment in top level sports'),
        ('sports', 'Summit Series look launches HBO Canada sports doc series: Mudhar')
    ]
    # train and save best model
    m.train(data)
    # load best model from model_dir
    m.load_model()
    predict_label, predict_proba = m.predict([
        'Abbott government spends $8 million on higher education media blitz'])
    print(f'predict_label: {predict_label}, predict_proba: {predict_proba}')

    test_data = [
        ('education', 'Abbott government spends $8 million on higher education media blitz'),
        ('sports', 'Middle East and Asia boost investment in top level sports'),
    ]
    acc_score = m.evaluate_model(test_data)
    print(f'acc_score: {acc_score}')

output:

ClassicClassifier instance (LogisticRegression(fit_intercept=False), stopwords size: 2438)
predict_label: ['education'], predict_proba: [0.5378236358492112]
acc_score: 1.0

2. Chinese Text Classifier(中文文本分类)

文本分类兼容中英文语料库。

example examples/lr_classification_demo.py

import sys

sys.path.append('..')
from pytextclassifier import ClassicClassifier

if __name__ == '__main__':
    m = ClassicClassifier(output_dir='models/lr-toy', model_name_or_model='lr')
    # 经典分类方法,支持的模型包括:lr, random_forest, decision_tree, knn, bayes, svm, xgboost
    data = [
        ('education', '名师指导托福语法技巧:名词的复数形式'),
        ('education', '中国高考成绩海外认可 是“狼来了”吗?'),
        ('education', '公务员考虑越来越吃香,这是怎么回事?'),
        ('sports', '图文:法网孟菲尔斯苦战进16强 孟菲尔斯怒吼'),
        ('sports', '四川丹棱举行全国长距登山挑战赛 近万人参与'),
        ('sports', '米兰客场8战不败国米10年连胜'),
    ]
    m.train(data)
    print(m)
    # load best model from model_dir
    m.load_model()
    predict_label, predict_proba = m.predict(['福建春季公务员考试报名18日截止 2月6日考试',
                                              '意甲首轮补赛交战记录:米兰客场8战不败国米10年连胜'])
    print(f'predict_label: {predict_label}, predict_proba: {predict_proba}')

    test_data = [
        ('education', '福建春季公务员考试报名18日截止 2月6日考试'),
        ('sports', '意甲首轮补赛交战记录:米兰客场8战不败国米10年连胜'),
    ]
    acc_score = m.evaluate_model(test_data)
    print(f'acc_score: {acc_score}')  # 1.0

    #### train model with 1w data
    print('-' * 42)
    m = ClassicClassifier(output_dir='models/lr', model_name_or_model='lr')
    data_file = 'thucnews_train_1w.txt'
    m.train(data_file)
    m.load_model()
    predict_label, predict_proba = m.predict(
        ['顺义北京苏活88平米起精装房在售',
         '美EB-5项目“15日快速移民”将推迟'])
    print(f'predict_label: {predict_label}, predict_proba: {predict_proba}')

output:

ClassicClassifier instance (LogisticRegression(fit_intercept=False), stopwords size: 2438)
predict_label: ['education' 'sports'], predict_proba: [0.5, 0.598941806741534]
acc_score: 1.0
------------------------------------------
predict_label: ['realty' 'education'], predict_proba: [0.7302956923617372, 0.2565005445322923]

3.可解释性分析

例如,显示模型的特征权重,以及预测词的权重 examples/visual_feature_importance.ipynb

import sys

sys.path.append('..')
from pytextclassifier import ClassicClassifier
import jieba

tc = ClassicClassifier(output_dir='models/lr-toy', model_name_or_model='lr')
data = [
    ('education', '名师指导托福语法技巧:名词的复数形式'),
    ('education', '中国高考成绩海外认可 是“狼来了”吗?'),
    ('sports', '图文:法网孟菲尔斯苦战进16强 孟菲尔斯怒吼'),
    ('sports', '四川丹棱举行全国长距登山挑战赛 近万人参与'),
    ('sports', '米兰客场8战不败国米10年连胜')
]
tc.train(data)
import eli5

infer_data = ['高考指导托福语法技巧国际认可',
              '意甲首轮补赛交战记录:米兰客场8战不败国米10年连胜']
eli5.show_weights(tc.model, vec=tc.feature)
seg_infer_data = [' '.join(jieba.lcut(i)) for i in infer_data]
eli5.show_prediction(tc.model, seg_infer_data[0], vec=tc.feature,
                     target_names=['education', 'sports'])

output:

4. Deep Classification model

本项目支持以下深度分类模型:FastText、TextCNN、TextRNN、Bert模型,import模型对应的方法来调用:

from pytextclassifier import FastTextClassifier, TextCNNClassifier, TextRNNClassifier, BertClassifier

下面以FastText模型为示例,其他模型的使用方法类似。

4.1 FastText 模型

训练和预测FastText模型示例examples/fasttext_classification_demo.py

import sys

sys.path.append('..')
from pytextclassifier import FastTextClassifier, load_data

if __name__ == '__main__':
    m = FastTextClassifier(output_dir='models/fasttext-toy')
    data = [
        ('education', '名师指导托福语法技巧:名词的复数形式'),
        ('education', '中国高考成绩海外认可 是“狼来了”吗?'),
        ('education', '公务员考虑越来越吃香,这是怎么回事?'),
        ('sports', '图文:法网孟菲尔斯苦战进16强 孟菲尔斯怒吼'),
        ('sports', '四川丹棱举行全国长距登山挑战赛 近万人参与'),
        ('sports', '米兰客场8战不败保持连胜'),
    ]
    m.train(data, num_epochs=3)
    print(m)
    # load trained best model
    m.load_model()
    predict_label, predict_proba = m.predict(['福建春季公务员考试报名18日截止 2月6日考试',
                                              '意甲首轮补赛交战记录:米兰客场8战不败国米10年连胜'])
    print(f'predict_label: {predict_label}, predict_proba: {predict_proba}')
    test_data = [
        ('education', '福建春季公务员考试报名18日截止 2月6日考试'),
        ('sports', '意甲首轮补赛交战记录:米兰客场8战不败国米10年连胜'),
    ]
    acc_score = m.evaluate_model(test_data)
    print(f'acc_score: {acc_score}')  # 1.0

    #### train model with 1w data
    print('-' * 42)
    data_file = 'thucnews_train_1w.txt'
    m = FastTextClassifier(output_dir='models/fasttext')
    m.train(data_file, names=('labels', 'text'), num_epochs=3)
    # load best trained model from model_dir
    m.load_model()
    predict_label, predict_proba = m.predict(
        ['顺义北京苏活88平米起精装房在售',
         '美EB-5项目“15日快速移民”将推迟']
    )
    print(f'predict_label: {predict_label}, predict_proba: {predict_proba}')
    x, y, df = load_data(data_file)
    test_data = df[:100]
    acc_score = m.evaluate_model(test_data)
    print(f'acc_score: {acc_score}')

4.2 BERT 类模型

4.2.1 多分类模型

训练和预测BERT多分类模型,示例examples/bert_classification_zh_demo.py

import sys

sys.path.append('..')
from pytextclassifier import BertClassifier

if __name__ == '__main__':
    m = BertClassifier(output_dir='models/bert-chinese-toy', num_classes=2,
                       model_type='bert', model_name='bert-base-chinese', num_epochs=2)
    # model_type: support 'bert', 'albert', 'roberta', 'xlnet'
    # model_name: support 'bert-base-chinese', 'bert-base-cased', 'bert-base-multilingual-cased' ...
    data = [
        ('education', '名师指导托福语法技巧:名词的复数形式'),
        ('education', '中国高考成绩海外认可 是“狼来了”吗?'),
        ('education', '公务员考虑越来越吃香,这是怎么回事?'),
        ('sports', '图文:法网孟菲尔斯苦战进16强 孟菲尔斯怒吼'),
        ('sports', '四川丹棱举行全国长距登山挑战赛 近万人参与'),
        ('sports', '米兰客场8战不败国米10年连胜'),
    ]
    m.train(data)
    print(m)
    # load trained best model from model_dir
    m.load_model()
    predict_label, predict_proba = m.predict(['福建春季公务员考试报名18日截止 2月6日考试',
                                              '意甲首轮补赛交战记录:米兰客场8战不败国米10年连胜'])
    print(f'predict_label: {predict_label}, predict_proba: {predict_proba}')

    test_data = [
        ('education', '福建春季公务员考试报名18日截止 2月6日考试'),
        ('sports', '意甲首轮补赛交战记录:米兰客场8战不败国米10年连胜'),
    ]
    acc_score = m.evaluate_model(test_data)
    print(f'acc_score: {acc_score}')

    # train model with 1w data file and 10 classes
    print('-' * 42)
    m = BertClassifier(output_dir='models/bert-chinese', num_classes=10,
                       model_type='bert', model_name='bert-base-chinese', num_epochs=2,
                       args={"no_cache": True, "lazy_loading": True, "lazy_text_column": 1, "lazy_labels_column": 0, })
    data_file = 'thucnews_train_1w.txt'
    # 如果训练数据超过百万条,建议使用lazy_loading模式,减少内存占用
    m.train(data_file, test_size=0, names=('labels', 'text'))
    m.load_model()
    predict_label, predict_proba = m.predict(
        ['顺义北京苏活88平米起精装房在售',
         '美EB-5项目“15日快速移民”将推迟',
         '恒生AH溢指收平 A股对H股折价1.95%'])
    print(f'predict_label: {predict_label}, predict_proba: {predict_proba}')

PS:如果训练数据超过百万条,建议使用lazy_loading模式,减少内存占用

4.2.2 多标签分类模型

分类可以分为多分类和多标签分类。多分类的标签是排他的,而多标签分类的所有标签是不排他的。

多标签分类比较直观的理解是,一个样本可以同时拥有几个类别标签,
比如一首歌的标签可以是流行、轻快,一部电影的标签可以是动作、喜剧、搞笑等,这都是多标签分类的情况。

训练和预测BERT多标签分类模型,示例examples/bert_multilabel_classification_zh_demo.py.py

import sys
import pandas as pd

sys.path.append('..')
from pytextclassifier import BertClassifier


def load_jd_data(file_path):
    """
    Load jd data from file.
    @param file_path: 
        format: content,其他,互联互通,产品功耗,滑轮提手,声音,APP操控性,呼吸灯,外观,底座,制热范围,遥控器电池,味道,制热效果,衣物烘干,体积大小
    @return: 
    """
    data = []
    with open(file_path, 'r', encoding='utf-8') as f:
        for line in f:
            line = line.strip()
            if line.startswith('#'):
                continue
            if not line:
                continue
            terms = line.split(',')
            if len(terms) != 16:
                continue
            val = [int(i) for i in terms[1:]]
            data.append([terms[0], val])
    return data


if __name__ == '__main__':
    # model_type: support 'bert', 'albert', 'roberta', 'xlnet'
    # model_name: support 'bert-base-chinese', 'bert-base-cased', 'bert-base-multilingual-cased' ...
    m = BertClassifier(output_dir='models/multilabel-bert-zh-model', num_classes=15,
                       model_type='bert', model_name='bert-base-chinese', num_epochs=2, multi_label=True)
    # Train and Evaluation data needs to be in a Pandas Dataframe containing at least two columns, a 'text' and a 'labels' column. The `labels` column should contain multi-hot encoded lists.
    train_data = [
        ["一个小时房间仍然没暖和", [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]],
        ["耗电情况:这个没有注意", [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
    ]
    data = load_jd_data('multilabel_jd_comments.csv')
    train_data.extend(data)
    print(train_data[:5])
    train_df = pd.DataFrame(train_data, columns=["text", "labels"])

    print(train_df.head())
    m.train(train_df)
    print(m)
    # Evaluate the model
    acc_score = m.evaluate_model(train_df[:20])
    print(f'acc_score: {acc_score}')

    # load trained best model from model_dir
    m.load_model()
    predict_label, predict_proba = m.predict(['一个小时房间仍然没暖和', '耗电情况:这个没有注意'])
    print(f'predict_label: {predict_label}, predict_proba: {predict_proba}')

5.模型验证

  1. THUCNews中文文本数据集(1.56GB):官方下载地址,抽样了10万条THUCNews中文文本10分类数据集(6MB),地址:examples/thucnews_train_10w.txt。
  2. TNEWS今日头条中文新闻(短文本)分类 Short Text Classificaiton for News,该数据集(5.1MB)来自今日头条的新闻版块,共提取了15个类别的新闻,包括旅游,教育,金融,军事等,地址:tnews_public.zip

在THUCNews中文文本10分类数据集(6MB)上评估,模型在测试集(test)评测效果如下:

模型acc说明
LR0.8803逻辑回归Logistics Regression
TextCNN0.8809Kim 2014 经典的CNN文本分类
TextRNN_Att0.9022BiLSTM+Attention
FastText0.9177bow+bigram+trigram, 效果出奇的好
DPCNN0.9125深层金字塔CNN
Transformer0.8991效果较差
BERT-base0.9483bert + fc
ERNIE0.9461比bert略差

在中文新闻短文本分类数据集TNEWS上评估,模型在开发集(dev)评测效果如下:

模型acc说明
BERT-base0.5660本项目实现
BERT-base0.5609CLUE Benchmark Leaderboard结果 CLUEbenchmark
  • 以上结果均为分类的准确率(accuracy)结果
  • THUCNews数据集评测结果可以基于examples/thucnews_train_10w.txt数据用examples下的各模型demo复现
  • TNEWS数据集评测结果可以下载TNEWS数据集,运行examples/bert_classification_tnews_demo.py复现
  • 命令行调用

提供分类模型命令行调用脚本,文件树:

pytextclassifier
├── bert_classifier.py
├── fasttext_classifier.py
├── classic_classifier.py
├── textcnn_classifier.py
└── textrnn_classifier.py

每个文件对应一个模型方法,各模型完全独立,可以直接运行,也方便修改,支持通过argparse 修改--data_path等参数。

直接在终端调用fasttext模型训练:

python -m pytextclassifier.fasttext_classifier -h

6.文本聚类算法

Text clustering, for example examples/cluster_demo.py

import sys

sys.path.append('..')
from pytextclassifier.textcluster import TextCluster

if __name__ == '__main__':
    m = TextCluster(output_dir='models/cluster-toy', n_clusters=2)
    print(m)
    data = [
        'Student debt to cost Britain billions within decades',
        'Chinese education for TV experiment',
        'Abbott government spends $8 million on higher education',
        'Middle East and Asia boost investment in top level sports',
        'Summit Series look launches HBO Canada sports doc series: Mudhar'
    ]
    m.train(data)
    m.load_model()
    r = m.predict(['Abbott government spends $8 million on higher education media blitz',
                   'Middle East and Asia boost investment in top level sports'])
    print(r)

    ########### load chinese train data from 1w data file
    from sklearn.feature_extraction.text import TfidfVectorizer

    tcluster = TextCluster(output_dir='models/cluster', feature=TfidfVectorizer(ngram_range=(1, 2)), n_clusters=10)
    data = tcluster.load_file_data('thucnews_train_1w.txt', sep='\t', use_col=1)
    feature, labels = tcluster.train(data[:5000])
    tcluster.show_clusters(feature, labels, 'models/cluster/cluster_train_seg_samples.png')
    r = tcluster.predict(data[:30])
    print(r)

output:

TextCluster instance (MiniBatchKMeans(n_clusters=2, n_init=10), <pytextclassifier.utils.tokenizer.Tokenizer object at 0x7f80bd4682b0>, TfidfVectorizer(ngram_range=(1, 2)))
[1 1 1 1 1 1 1 1 1 1 1 8 1 1 1 1 1 1 1 1 1 1 9 1 1 8 1 1 9 1]

clustering plot image:

参考链接:https://github.com/shibing624/pytextclassifier

如果github进入不了也可进入 https://download.csdn.net/download/sinat_39620217/88205140 免费下载相关资料

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/74233.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Linux:Firewalld防火墙

目录 绪论 1、firewalld配置模式 2、预定义服务&#xff1a;系统自带 3端口管理 绪论 firewalld 防火墙&#xff0c;包过滤防火墙&#xff0c;工作在网络层&#xff0c;centos7自带的默认的防火墙 作用是为了取代iptables 1、firewalld配置模式 运行时配置 永久配置 i…

HTML详解连载(1)

HTML详解连载&#xff08;1&#xff09; HTML定义HTML 超文本标记语言标签语法注意拓展 HTML基本骨架解释VS Code 快速生成骨架&#xff1a;标签的关系父子关系&#xff08;嵌套关系&#xff09;兄弟关系&#xff08;并列关系&#xff09; 代码格式注释 标题标签标签名:h1-h6(双…

Jenkins 监控dist.zip文件内容发生变化 触发自动部署

为Jenkins添加plugin http://xx:xx/manage 创建一个任务 构建触发器 每3分钟扫描一次&#xff0c;发现指定文件build.zip文件的MD5发生变化后 触发任务

IntelliJ IDEA(简称Idea) 基本常用设置及Maven部署---详细介绍

一&#xff0c;Idea是什么&#xff1f; 前言&#xff1a; 众所周知&#xff0c;现在有许多编译工具&#xff0c;如eclipse&#xff0c;pathon, 今天所要学的Idea编译工具 Idea是JetBrains公司开发的一款强大的集成开发环境&#xff08;IDE&#xff09;&#xff0c;主要用于Java…

qemu简单使用

参考&#xff1a; 记一次全设备通杀未授权RCE的挖掘经历 claude1 安装使用 附件下载 下载后拖到虚拟机 解压 使用root用户 运行.sh脚本即可 运行脚本解读 #!/bin/bashsudo qemu-system-mipsel \-cpu 74Kf \-M malta \-kernel vmlinux-3.2.0-4-4kc-malta \ -hda debian…

【C语言】每日一题(寻找数组的中心下标)

寻找数组的中心下标&#xff0c;链接奉上 方法 暴力循环前缀和 暴力循环 ​​​​​​​思路&#xff1a; 依旧是我们的老朋友&#xff0c;暴力循环。 1.可以利用外层for循环&#xff0c;循环变量为数组下标&#xff0c;在循环内分别求出下标左边与右边的sum 2.在边界时讨论&…

【华为Datacom 综合拓扑案例—分享篇】

拓扑图 题目要求 实验要求&#xff1a; 1、PC1\PC2\PC3\PC4采用DHCP自动获取IP地址&#xff0c;SW5作为服务器&#xff0c;SW3和SW4作为中继 创建地址池ip pool huawei1和ip pool huawei2&#xff0c;租期都为2天 2、SW3与SW4做链路聚合&#xff0c;采用LACP模式。SW3作为主…

VScode如何设置中文教程

前言&#xff1a;打开VSCode软件&#xff0c;可以看到刚刚安装的VSCode软件默认使用的是英文语言环境&#xff0c;但网上都是vscode中文界面教你怎么设置中文&#xff0c;可能不利于小白阅读&#xff0c;所以重装vscode&#xff0c;手摸手从英文变成中文。 设置为中文 打开VS…

Mirror网络库 | 实战

此篇为下文&#xff0c;上篇&#xff1a;Mirror网络库 | 说明 一、官方实例说明 场景名说明AdditiveLevels场景为“关卡”&#xff0c;附加形式加载AdditiveScenes加载卸载附加场景Basic基础的连接/断开&#xff0c;消息发送Benchmark服务器1000“怪物”生成性能测试Benchmark…

PHP最简单自定义自己的框架控制器自动加载运行(四)

1、实现效果调用控制中方法 2、创建控制器indexCrl.php <?php class indexCrl{public function index(){echo 当前index控制器index方法;} } 3、KJ.php字段加载控制器文件 public static function run(){//定义常量self::_set_const();//创建模块目录self::_mk_module();…

Vue-打印组件页面

场景: 需要将页面的局部信息打印出来&#xff0c;只在前端实现&#xff0c;不要占用后端的资源。经过百度经验&#xff0c;决定使用 print-js和html2canvas组件。 1. 下载包 npm install print-js --save npm install --save html2canvas 2. 组件内引用 <script>impo…

win11右下角图标(网络,音量,电量)点击无反应问题,两分钟解决!

win11系统用的好好的&#xff0c;突然有一天任务栏右下角的常用三件套&#xff08;网络&#xff0c;音量&#xff0c;电量&#xff09;左键单击没反应&#xff0c;无法方便的调节音量和连接wifi&#xff0c;如下图所示&#xff0c;但是右键好用&#xff0c;不过不方便。网上查了…

spring按条件注入@Condition及springboot对其的扩展

概述 spring的ioc极大的方便了日常开发&#xff0c;但随着业务的迭代。配置的一些参数在某些情况下需要按条件注入。 比如原先定义的db公共模块下&#xff0c;相关的配置和工具类只是基于mysql的。但是后续有模块需要使用mongo/es等其他数据库&#xff0c;又想继续使用db公共…

RocketMQ消息轨迹产生的背景以及使用方式

这里是weihubeats,觉得文章不错可以关注公众号小奏技术&#xff0c;文章首发。拒绝营销号&#xff0c;拒绝标题党 背景 最近在维护RocketMQ经常会出现这种问题 消息发送方和接收方出现扯皮&#xff0c;消息发送方说我的消息已经发送成功了&#xff0c;消费方说我没接收到消息。…

AI黑马挑战赛,探索研发新趋势丨IDCF

随着AI的出现&#xff0c;获取知识的成本大幅降低&#xff0c;当DevOps与AI相结合时&#xff0c;必将产生全新的化学反应。不断涌现的AI新工具提醒我们&#xff0c;一个全新的研发工作范式正在逐渐形成。而DevOps的核心理念是敏捷协同&#xff0c;作为工程师&#xff0c;如何通…

【从零学习python 】19. 循环遍历列表和列表嵌套的应用

文章目录 列表的循环遍历1. 使用while循环2. 使用for循环3. 交换2个变量的值1. 列表嵌套2. 应用 进阶案例 列表的循环遍历 1. 使用while循环 为了更有效率的输出列表的每个数据&#xff0c;可以使用循环来完成 namesList [xiaoWang,xiaoZhang,xiaoHua] length len(namesLi…

基于C#的无边框窗体阴影绘制方案 - 开源研究系列文章

今天介绍无边框窗体阴影绘制的内容。 上次有介绍使用双窗体的方法来显示阴影&#xff0c;这次介绍使用API函数来进行绘制。这里使用的是Windows API函数&#xff0c;操作系统的窗体也是用的这个来进行的绘制。 1、 项目目录&#xff1b; 下面是项目目录&#xff1b; 2、 函数介…

浅谈早期基于模板匹配的OCR的原理

基于模板匹配的概念是一种早期的字符识别方法&#xff0c;它基于事先准备好的字符模板库来与待识别字符进行比较和匹配。其原理如下&#xff1a; 1. 字符模板库准备&#xff1a;首先&#xff0c;针对每个可能出现的字符&#xff0c;制作一个对应的字符模板。这些模板可以手工创…

同步_异步请求和Ajax并利用axios框架简化

目录 同步和异步 原生的Ajax 创建XMLHttpRequest对象 常用方法 常用属性 axios框架 同步和异步 同步请求&#xff1a;发送请求后&#xff0c;会做出回应&#xff0c;回应的内容会覆盖浏览器中的内容&#xff0c;这样会打断其他正常的操作&#xff0c;显得不太友好&#…

uni-app中使用pinia

目录 Pinia 是什么&#xff1f; uni-app 使用Pinia main.js 中引用pinia 创建和注册模块 定义pinia方式 选项options方式 定义pinia 页面中使用 pinia选项options方式 函数方式 定义pinia 页面中使用 函数方式 定义的pinia Pinia 是什么&#xff1f; Pinia&#xff0…