分类预测 | MATLAB实现BO-BiGRU贝叶斯优化双向门控循环单元多输入分类预测

分类预测 | MATLAB实现BO-BiGRU贝叶斯优化双向门控循环单元多输入分类预测

目录

    • 分类预测 | MATLAB实现BO-BiGRU贝叶斯优化双向门控循环单元多输入分类预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现BO-BiGRU贝叶斯优化双向门控循环单元多特征分类预测,运行环境Matlab2020b及以上;
2.可视化展示分类准确率,可在下载区获取数据和程序内容。
3.输入15个特征,输出4类标签。
4.贝叶斯优化参数为隐藏层节点、初始学习率、正则化系数。

模型描述

贝叶斯优化双向门控循环单元(Bidirectional Gated Recurrent Unit,Bi-GRU)是一种循环神经网络(Recurrent Neural Network,RNN)的变种,用于多输入分类预测问题。贝叶斯优化是一种优化算法,用于在参数空间中搜索最优的超参数配置。
Bi-GRU是基于门控循环单元(Gated Recurrent Unit,GRU)的双向循环神经网络。GRU是一种RNN单元,具有门控机制,可以更好地捕捉序列数据中的长期依赖关系。而双向循环神经网络能够同时考虑正向和反向的序列信息,从而更全面地理解和表示序列数据。
使用贝叶斯优化的过程中,我们首先定义一个超参数空间,包括Bi-GRU网络的结构和配置,如隐藏层的大小、学习率、批量大小等。然后,通过贝叶斯优化算法,在超参数空间中进行搜索,以找到最优的超参数配置。贝叶斯优化算法会自动选择下一个要评估的超参数配置,以最大化在有限的预算内获得的模型性能。训练过程中,使用带有标签的多输入数据来训练Bi-GRU模型。对于每个输入样本,Bi-GRU模型会在正向和反向两个方向上进行计算,得到正向和反向的隐藏状态表示。然后,将这两个隐藏状态拼接在一起,并将其输入到一个全连接层进行分类预测。最后,使用损失函数(如交叉熵)来度量预测结果与真实标签之间的差异,并使用反向传播算法更新模型的权重。在预测过程中,我们将新的输入样本提供给训练好的Bi-GRU模型,然后根据输出结果进行分类预测。
贝叶斯优化双向门控循环单元多输入分类预测方法可以有效地处理多输入序列数据的分类问题,并通过贝叶斯优化算法自动搜索最优的超参数配置,提高模型性能。然而,在实际应用中,需要注意选择合适的超参数空间和评估预算,以避免过度拟合或计算资源消耗过大的问题。

程序设计

  • 完整程序和数据获取方式1:同等价值程序兑换;
  • 完整程序和数据获取方式2:私信博主回复 BO-BiGRU贝叶斯优化双向门控循环单元多输入分类预测获取。
%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  数据平铺
%   将数据平铺成1维数据只是一种处理方式
%   也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
%   但是应该始终和输入层数据结构保持一致
p_train =  double(reshape(p_train, f_, 1, 1, M));
p_test  =  double(reshape(p_test , f_, 1, 1, N));
t_train =  double(t_train)';
t_test  =  double(t_test )';

%%  数据格式转换
for i = 1 : M
    Lp_train{i, 1} = p_train(:, :, 1, i);
end

for i = 1 : N
    Lp_test{i, 1}  = p_test( :, :, 1, i);
end
    
%%  建立模型
lgraph = layerGraph();                                                 % 建立空白网络结构

tempLayers = [
    sequenceInputLayer([f_, 1, 1], "Name", "sequence")                 % 建立输入层,输入数据结构为[f_, 1, 1]
    sequenceFoldingLayer("Name", "seqfold")];                          % 建立序列折叠层
lgraph = addLayers(lgraph, tempLayers);                                % 将上述网络结构加入空白结构中

tempLayers = convolution2dLayer([3, 1], 32, "Name", "conv_1");         % 卷积层 卷积核[3, 1] 步长[1, 1] 通道数 32
lgraph = addLayers(lgraph,tempLayers);                                 % 将上述网络结构加入空白结构中
%% 赋值
L2Regularization =abs(optVars(1)); % 正则化参数
InitialLearnRate=abs(optVars(2)); % 初始学习率
NumOfUnits = abs(round(optVars(3))); % 隐藏层节点数

%%  输入和输出特征个数
inputSize    = size(input_train, 1);   %数据输入x的特征维度
numResponses = size(output_train, 1);   %数据输出y的维度

%%  设置网络结构
opt.layers = [ ...
    sequenceInputLayer(inputSize)     %输入层,参数是输入特征维数


%%  设置网络参数
opt.options = trainingOptions('adam', ...             % 优化算法Adam
    'MaxEpochs', 100, ...                            % 最大训练次数,推荐180
    'GradientThreshold', 1, ...                      %梯度阈值,防止梯度爆炸
    'ExecutionEnvironment','cpu',...   %对于大型数据集合、长序列或大型网络,在 GPU 上进行预测计算通常比在 CPU 上快。其他情况下,在 CPU 上进行预测计算通常更快。
    'InitialLearnRate', InitialLearnRate, ... % 初始学习率
    'LearnRateSchedule', 'piecewise', ...             % 学习率调整
    'LearnRateDropPeriod',120, ...                   % 训练80次后开始调整学习率
    'LearnRateDropFactor',0.2, ...                  % 指定初始学习率 0.005,在 100 轮训练后通过乘以因子 0.2 来降低学习率。
    'L2Regularization', L2Regularization, ...       % 正则化参数
    'Verbose', 0, ...                                 % 关闭优化过程
    'Plots', 'none');                                 % 不画出曲线 

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129679476?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/129659229?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129653829?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/73984.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

dirsearch_暴力扫描网页结构

python3 dirsearch 暴力扫描网页结构(包括网页中的目录和文件) 下载地址:https://gitee.com/xiaozhu2022/dirsearch/repository/archive/master.zip 下载解压后,在dirsearch.py文件窗口,打开终端(任务栏…

Linux命名管道进程通信

文章目录 前言一、什么是命名管道通信二、创建方式三、代码示例四、文件进程通信总结 前言 命名管道 是实现进程间通信的强大工具,它提供了一种简单而有效的方式,允许不同进程之间进行可靠的数据交换。不仅可以在同一主机上的不相关进程间进行通信&…

2023年国赛数学建模思路 - 复盘:光照强度计算的优化模型

文章目录 0 赛题思路1 问题要求2 假设约定3 符号约定4 建立模型5 模型求解6 实现代码 建模资料 0 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 1 问题要求 现在已知一个教室长为15米,宽为12米&…

【JavaScript】match用法 | 正则匹配

match正则匹配 var e "www.apple.com:baidu.com" var match e.match(/com/g) console.log("match: "match);> "match: com,com"match返回值问题 match的返回值是一个数组 数组的第0个元素是与整个正则表达式匹配的结果 数组的第1个元素是…

【新品发布】ChatWork企业知识库系统源码

系统简介 基于前后端分离架构以及Vue3、uni-app、ThinkPHP6.x、PostgreSQL、pgvector技术栈开发,包含PC端、H5端。 ChatWork支持问答式和文档式知识库,能够导入txt、doc、docx、pdf、md等多种格式文档。 导入数据完成向量化训练后,用户提问…

查看单元测试用例覆盖率新姿势:IDEA 集成 JaCoCo

1、什么是 IDEA IDEA 全称 IntelliJ IDEA,是 Java 编程语言开发的集成环境。IntelliJ 在业界被公认为最好的 Java 开发工具,尤其在智能代码助手、代码自动提示、重构、JavaEE 支持、各类版本工具(git、SVN 等)、JUnit、CVS 整合、代码分析、 创新的 GUI…

[NDK]从Opengles到Vulkan-基础篇(2)-运行配置

上一篇我们介绍了Opengl和Vulkan运行环境的不同。 引入Opengles,我们需要做的是,在Cmakes中配置动态库引入。 使用opengles2就用GLESv2,用es3就用GLESv3,而EGL需要使用配置EGL环境 这里两个比较基础的东西是EGL和GLES的库引入。 es2只要Android 4.0就开始支持,es3是4.4开…

opencv图片灰度二值化

INCLUDEPATH D:\work\opencv_3.4.2_Qt\include LIBS D:\work\opencv_3.4.2_Qt\x86\bin\libopencv_*.dll #include <iostream> #include<opencv2/opencv.hpp> //引入头文件using namespace cv; //命名空间 using namespace std;//opencv这个机器视…

共识算法初探

共识机制的背景 加密货币都是去中心化的&#xff0c;去中心化的基础就是P2P节点众多&#xff0c;那么如何吸引用户加入网络成为节点&#xff0c;有那些激励机制&#xff1f;同时&#xff0c;开发的重点是让多个节点维护一个数据库&#xff0c;那么如何决定哪个节点写入&#x…

通过版本号控制强制刷新浏览器或清空浏览器缓存

背景介绍 在我们做 web 项目时&#xff0c;经常会遇到一个问题就是&#xff0c;需要 通知业务人员&#xff08;系统用户&#xff09;刷新浏览器或者清空浏览器 cookie 缓存的情况。 而对于用户而言&#xff0c;很多人一方面不懂如何操作&#xff0c;另一方面由于执行力问题&am…

【C语言】const修饰普通变量和指针

大家好&#xff0c;我是苏貝&#xff0c;本篇博客是系列博客每日一题的第一篇&#xff0c;本系列的题都不会太难&#xff0c;如果大家对这种系列的博客感兴趣的话&#xff0c;可以给我一个赞&#x1f44d;吗&#xff0c;感谢❤️ 文章目录 一.const修饰普通变量二.const修饰指…

Docker容器与虚拟化技术:Docker架构、镜像管理

目录 一、理论 1.Doker概述 2.Docker核心概念 3.Docker安装 4.Docker的镜像管理命令 二、实验 1.Docker安装 2.查看Docker信息 3.Docker的镜像管理命令 三、问题 1.如何注册Docker账号 2.如何设置Docker公共存储库 四、总结 一、理论 1.Doker概述 (1) IT架构 裸…

助力青少年科技创新人才培养,猿辅导投资1亿元设立新基金

近日&#xff0c;在日本千叶县举办的2023年第64届国际数学奥林匹克&#xff08;IMO&#xff09;竞赛公布比赛结果&#xff0c;中国队连续5年获得团体第一。奖牌榜显示&#xff0c;代表中国参赛的6名队员全部获得金牌。其中&#xff0c;猿辅导学员王淳稷、孙启傲分别以42分、39分…

LLaMA长度外推高性价比trick:线性插值法及相关改进源码阅读及相关记录

前言 最近&#xff0c;开源了可商用的llama2&#xff0c;支持长度相比llama1的1024&#xff0c;拓展到了4096长度&#xff0c;然而&#xff0c;相比GPT-4、Claude-2等支持的长度&#xff0c;llama的长度外推显得尤为重要&#xff0c;本文记录了三种网络开源的RoPE改进方式及相…

ArcGIS Pro 基础安装与配置介绍

ArcGIS Pro ArcGIS Pro作为ESRI面向新时代的GIS产品&#xff0c;它在原有的ArcGIS平台上继承了传统桌面软件&#xff08;ArcMap&#xff09;的强大的数据管理、制图、空间分析等能力&#xff0c;还具有其独有的特色功能&#xff0c;例如二三维融合、大数据、矢量切片制作及发布…

用vim打开后中文乱码怎么办

Vim中打开文件乱码主要是文件编码问题。用户可以参考如下解决方法。 1、用vim打开.vimrc配置文件 vim ~/.vimrc**注意&#xff1a;**如果用户根目录下没有.vimrc文件就把/etc/vim/vimrc文件复制过来直接用 cp /etc/vim/vimrc ~/.vimrc2、在.vimrc中加入如下内容 set termen…

树莓派3B CSI摄像头配置

1.硬件连接 1、找到 CSI 接口(树莓派3B的CSI接口在HDMI接口和音频口中间)&#xff0c;需要拉起 CSI 接口挡板,如下&#xff1a; 2、将摄像头排线插入CSI接口。记住&#xff0c;有蓝色胶带的一面应该面向音频口或者网卡方向&#xff0c; 确认方向并插紧排线&#xff0c;将挡板…

app专项测试:app弱网测试

目录 弱网测试背景 网络测试要点 弱网测试关注指标 弱网测试工具 fiddler模拟网络延时场景 网络设置参考 Network Emulator Toolkit模拟网络丢包场景&#xff08;windows网络&#xff09; APP弱网测试 弱网使用工具&#xff1a; app弱网测试要点 APP网络测试要点 网络…

Mysql 搭建MHA高可用架构,实现自动failover,完成主从切换

目录 自动failover MHA&#xff1a; MHA 服务 项目&#xff1a;搭建Mysql主从复制、MHA高可用架构 实验项目IP地址配置&#xff1a; MHA下载地址 项目步骤&#xff1a; 一、修改主机名 二、编写一键安装mha node脚本和一键安装mha mangaer脚本&#xff0c;并执行安装…

网络安全 Day31-运维安全项目-容器架构下

容器架构下 6. Dockerfile6.1 Docker自动化DIY镜像之Dockerfile1) 环境准备2) 书写Dockerfile内容3&#xff09; 运行Dockerfile生成镜像4) 运行容器5) 小结 6.2 案例14&#xff1a;Dockerfile-RUN指令1) 书写Dockerfile2) 构建镜像3) 启动容器4) 测试结果 6.3 Dockerfile指令 …