【ISAC】通感一体化讲座(刘凡)

高斯信道下通信感知一体化的性能极限(刘凡)

文章目录

    • 背景

在这里插入图片描述
在这里插入图片描述

背景

在这里插入图片描述
通信和感知在硬件结构上相似,高效地利用资源,实现相互的增益;
在这里插入图片描述
感知是基于不同的任务,比如目标检测(检测概率,虚警概率),估计任务(从收到的信号中去估计有用的参数,均方误差,CRB),识别(知道目标的语义信息,就是目标分类,识别准确率),这些感知指标基本都是可靠性指标,感知的结果难以量化成一个比特,所以我们不去讨论感知的有效性。
在这里插入图片描述
考虑估计指标,估计参数, E { ( η − η ^ ) ( η − η ^ ) T } ⩾ J − 1 = { E [ ∂ 2 ln ⁡ p ( Y , η ) ∂ η ∂ η T ] } − 1 \mathbb{E}\Big\{(\mathbf{\eta}-\mathbf{\hat{\eta}})(\mathbf{\eta}-\mathbf{\hat{\eta}})^{\mathrm{T}}\Big\}\geqslant\mathbf{J}^{-1}=\Big\{\mathbb{E}\left[\frac{\partial^{2}\ln p(\mathbf{Y},\mathbf{\eta})}{\partial\mathbf{\eta}\partial\mathbf{\eta}^{\mathrm{T}}}\right]\Big\}^{-1} E{ (ηη^)(ηη^)T}J1={ E[ηηT2lnp(Y,η)]}1,估计的参数是 η \eta η(比如距离、速度和角度等),比如发射一个信号打到一个目标上,返回的信号就携带了关于这个目标信息。信号记作 Y \mathbf{Y} Y,服从一定概率的随机变量, η \eta η也是随机变量(列向量),拿到 Y \mathbf{Y} Y η \eta η作估计,记作 η ^ \hat{\eta} η^, 求MSE即 E { ( η − η ^ ) ( η − η ^ ) T } \mathbb{E}\Big\{(\mathbf{\eta}-\mathbf{\hat{\eta}})(\mathbf{\eta}-\mathbf{\hat{\eta}})^{\mathrm{T}}\Big\} E{ (ηη^)(ηη^)T},统计里MSE有下界,下界就是CRB(CRB是感知的性能极限),CRB的PDF越尖,包含目标的信息就越多,它的逆就是误差的bound(CRB的PDF多尖定义为Fisher Information,Fisher Information是联合分布 p ( Y , η ) p(\mathbf{Y},\mathbf{\eta}) p(Y,η),为什么是联合分布,这是一个贝叶斯的CRB),联合分布 p ( Y , η ) p(\mathbf{Y},\mathbf{\eta}) p(Y,η) η ) \mathbf{\eta}) η)求二阶导取期望, [ ∂ 2 ln ⁡ p ( Y , η ) ∂ η ∂ η T ] \left[\frac{\partial^{2}\ln p(\mathbf{Y},\mathbf{\eta})}{\partial\mathbf{\eta}\partial\mathbf{\eta}^{\mathrm{T}}}\right] [ηηT2lnp(Y,η)]叫Hessian矩阵(海森矩阵,Hessian矩阵求期望就是Fisher信息矩阵),海森矩阵求期望再取逆叫做CRB matrix,矩阵 { ( η − η ^ ) ( η − η ^ ) T } \Big\{(\mathbf{\eta}-\mathbf{\hat{\eta}})(\mathbf{\eta}-\mathbf{\hat{\eta}})^{\mathrm{T}}\Big\} { (ηη^)(ηη^)T}在半正定意义上大于等于Hessian矩阵的逆,对 { ( η − η ^ ) ( η − η ^ ) T } \Big\{(\mathbf{\eta}-\mathbf{\hat{\eta}})(\mathbf{\eta}-\mathbf{\hat{\eta}})^{\mathrm{T}}\Big\} { (ηη^)(ηη^)T}求迹tra,将所有误差加起来,CRB一般是 { E [ ∂ 2 ln ⁡ p ( Y , η ) ∂ η ∂ η T ] } − 1 \Big\{\mathbb{E}\left[\frac{\partial^{2}\ln p(\mathbf{Y},\mathbf{\eta})}{\partial\mathbf{\eta}\partial\mathbf{\eta}^{\mathrm{T}}}\right]\Big\}^{-1} { E[ηηT2lnp(Y,η)]}1求trace。
一般的CRB中 η \eta η是确定变量, p ( Y , η ) p(\mathbf{Y},\mathbf{\eta}) p(Y,η)会变成似然函数(可以这样理解,观测数据和参数的联合分布,当其中一个给定,为了使得PDF最大,去优化另外一个,都是优化似然函数)。

半正定 (positive semidefinite)矩阵表示一个对称矩阵,其所有特征值都非负。
这意味着,对于任意非意 x \mathfrak{x} x,都有:
x T ( E { ( η − η ^ ) ( η − η ^ ) T } − J − 1 ( η ) ) x ≥ 0 \mathbf{x}^T\left(\mathbb{E}\Big\{(\eta-\hat{\eta})(\eta-\hat{\eta})^\mathrm{T}\Big\}-\mathbf{J}^{-1}(\eta)\Big)\mathbf{x}\geq0\right. xT(E{ (ηη^)(ηη^)T}J1(η))x0
在这里插入图片描述
下面讨论性能极限(通信人的传统),研究一个新的通信系统第一步先搞清楚性能极限,两个极限:速率和CRB,此时性能极限就不是一个点了,而是一个边界,相当于2元的优化问题。速率和CRB如果同时达到最优(CRB最小,Rate达到最大,为Bound B矩形边界,意味着通信和感知之间没有任何矛盾),Bound A是Time sharing可以达到的界,最优的CRB在左下工作点概率是P1,最高的rate在右上工作点概率是P2,P1+P2=1,概率变化就可以得到Bound A直线,这条线叫做分时内界(time sharing inner bound),代表资源上通信和感知正交分配的情况(通信和感知没有共享资源)。一个比较实际的折中就是Bound C,通信和感知有一部分资源是共享的。
在这里插入图片描述
如何分配通信和感知的资源:通信和感知有不同的评价指标,对资源的分配和调度就有不同的侧重点。比如正交分配(在时间、频谱或者波束上分配通信和感知,时分、频分和空分)。另外是一体化波形,会得到Bound C,如何找到Bound C并且逼近。
在这里插入图片描述
找到这条界:ISAC信道分为3种,1)强耦合:通信的目标也是感知的目标;2)中度耦合:感知和通信分成两条径都被手机接受;3)弱耦合:通信和感知的两个目标在物理上隔得很远。三种耦合程度部分决定了边界的形状。
在这里插入图片描述
强耦合,抽象成两个subspace,两个subspace方向相同,朝一个方向打,通信和感知完全复用。中度耦合,复用就是各自的投影。弱耦合,两个空间正交,不得不正交分配资源,资源没办法复用。
如果考虑一个简单的beamforming问题,对于某个目标角度的CRB的优化,通信速率满足一个门限和一个功率的约束。
在这里插入图片描述
在这里插入图片描述
向量高斯信道,MIMO或者OFDM信道
感知接收机和发射机是否分开:
自发自收,一个通信用户,一个或者多个Target,ISAC的发射机,感知接收机。
发和收分开,但是中间可以用光纤连接,接受合作。
Y c = H c X + Z c , Y s = H s ( η ) X + Z s \mathbf{Y}_\mathrm{c}=\mathbf{H}_\mathrm{c}\mathbf{X}+\mathbf{Z}_\mathrm{c},\mathbf{Y}_\mathrm{s}=\mathbf{H}_\mathrm{s}(\mathbf{\eta})\mathbf{X}+\mathbf{Z}_\mathrm{s} Yc=HcX+Zc,Ys=Hs(η)X+Zs其中 Y c \mathbf{Y}_\mathrm{c} Yc是通信接收信号, Y s \mathbf{Y}_\mathrm{s} Ys是感知接收信号; X \mathbf{X} X是一个unified waveform,随机变量(只有随机信号才能携带信息);样本协方差矩阵,假设有N个天线,一个block的长度是T, X \mathbf{X} X就是一个N×T的矩阵(或者对应OFDM中N个OFDM符号,每个符号有T个子载波), X \mathbf{X} X的共轭转置/T就是样本协方差矩阵;求期望就是统计协方差矩阵。
在这里插入图片描述
一些重要的假设:
雷达的感知,感知的目标不能发射信号;
ISAC信号 X \mathbf{X} X对于感知接收机是已知的,因为在自发自收和发和收分开两种场景下,都是连接的。但是对通信接收机是未知的。
η \mathbf{\eta} ηIId,每T个symbol,iid地变化一次。
通信的channel, H c \mathbf{H}_\mathrm{c}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/739109.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

开源seata的分布式事务解决方案-XA、AT、TCC、SAGA哪个模式好

分布式事务是分布式系统中非常重要的一部分。假设一个用户购买商品的业务逻辑,系统有3个微服务组成,分别是订单服务、账户服务、库存服务,用户在提交订单后会从用户账户余额中扣款,同时扣减库存数量。在这样的场景下扣款和减库存需…

Vue核心指令解析:探索MVVM与数据操作之美

文章目录 前言一、Vue.js1. MVVM模式介绍2. 单页面组件介绍及案例讲解3. 插值表达式介绍及案例讲解 二、Vue常用指令详解1. 数据绑定指令v-textv-html 2. 条件渲染指令v-ifv-show 3. 列表渲染指令v-for循环数组介绍及案例讲解循环对象介绍及案例讲解 4. 事件监听指令v-on事件修…

【unity小技巧】unity事件系统创建通用的对象交互的功能

文章目录 前言实现1. **InteractEvent 类**:2. **Interact 类**:3. **Player 类**:4. **Chest 类**: 工作流程说明:开单个箱子按钮触发打开很多箱子拾取物品(传参)参考完结 前言 游戏开发过程中…

有效利用MRP能为中小企业带来什么?

在离散制造企业,主流的生产模式主要为面向订单生产和面向库存生产(又称为预测生产),在中小企业中,一般为面向订单生产,也有部分面向库存和面向订单混合的生产方式(以面向订单为主,面…

【初阶数据结构】深入解析栈:探索底层逻辑

🔥引言 本篇将深入解析栈:探索底层逻辑,理解底层是如何实现并了解该接口实现的优缺点,以便于我们在编写程序灵活地使用该数据结构。 🌈个人主页:是店小二呀 🌈C语言笔记专栏:C语言笔记 &#x1…

Kylin系列:架构和高级功能详解

目录 一、Kylin的架构 1.1 总体架构概述 1.2 数据源 1.3 元数据存储 1.4 构建引擎 1.5 存储引擎 1.6 查询引擎 1.7 用户接口 二、Kylin的高级功能 2.1 多维立方体(Cube) 2.1.1 Cube的定义 2.1.2 Cube的构建 2.2 查询优化 2.3 数据模型和星型模式 2.3.1 数据模…

我的常见问题记录

1,maven在idea工具可以正常使用,在命令窗口执行出现问题 代码: E:\test-hello\simple-test>mvn clean compile [INFO] Scanning for projects... [WARNING] [WARNING] Some problems were encountered while building the effective model for org.consola:simple-test:jar…

SpringBoot系列之搭建WebSocket应用

SpringBoot系列之@ServerEndpoint方式开发WebSocket应用。在实时的数据推送方面,经常会使用WebSocket或者MQTT来实现,WebSocket是一种不错的方案,只需要建立连接,服务端和客户端就可以进行双向的数据通信。很多网站的客户聊天,也经常使用WebSocket技术来实现。 WebSocket…

[巨详细]使用HBuilder-X新建uniapp项目教程

文章目录 安装HBuilder-X启动uniapp项目其他:下载预览浏览器下载终端插件想用uni-ui 安装HBuilder-X 详细步骤可看上文》》 启动uniapp项目 先打开HBuilder-X 点击新建项目 选择uniapp侧边栏,mian中的点击浏览 选择已经安装到本地的uniapp项目&#…

多商户零售外卖超市外卖商品系统源码

构建你的数字化零售王国 一、引言:数字化零售的崛起 在数字化浪潮的推动下,零售业务正经历着前所未有的变革。多商户零售外卖超市商品系统源码应运而生,为商户们提供了一个全新的数字化零售解决方案。通过该系统源码,商户们可以…

SpringIOC核心源码

一、Spring IOC容器源码解析 1、Spring IOC容器的核心类 (1)BeanFactory与ApplicationContext (2)默认容器DefaultListableBeanFactory a. DefaultListableBeanFactory实现的接口 b.DefaultListableBeanFactory继承的类&#…

【TB作品】MSP430G2553单片机,红外双机通信,红外通信程序

文章目录 NEC 红外通信协议实验步骤1. 硬件连接2. 程序说明红外发射部分红外接收部分 说明帮助 NEC 红外通信协议 NEC 红外通信协议是一种广泛应用于遥控器设备的红外通信协议。它采用脉冲宽度调制(PWM)来编码数据,并使用38kHz的载波频率进行传输。协议的特点如下&…

让在制品管理更有效

徐总的工厂生产线非常繁忙,每天都在不停地运转。但在制品的流转和存储也非常混乱,导致了很多问题的出现。 一方面,由于缺乏有效的管理,在制品的库存不断增加,占用了大量的资金和空间资源。这些库存不仅增加了库存成本&…

麦肯锡:量子传感究竟在何处可以发光发热

量子传感技术已经提供价值,潜在的应用案例可以塑造多个行业。有四种核心技术具有应用前景:固态自旋、中性原子、超导电路和离子阱,它们具有在广泛的物理属性上的传感能力,包括磁场、电场、旋转、温度、重力、时间和压力。选择哪种…

HTML(23)——垂直对齐方式

垂直对齐方式 属性名:vertical-align 属性值效果baseline基线对齐(默认)top顶部对齐middle居中对齐bottom底部对齐 默认情况下浏览器对行内块,行内标签都按文字处理,默认基线对齐 导致图片看起来会偏上,文字偏下。 示例&#…

USB2.0学习1--基本概念

目录 1.USB概念 2.USB协议发展 3.USB接口类型 3.1 TYPE类型 3.2 Mini类型 3.3 Micro类型 4. USB体系结构和关键概念 4.1 USB工作原理 4.2 USB物理拓扑结构 4.3 USB逻辑拓扑结构 4.4 USB软件架构 4.5 USB数据流模型 4.5.1 USB设备端点 4.5.2 USB管道 4.6 USB即插…

高晓松音频 百度网盘,高晓松音频 百度网盘资源,百度云大全

讲座主要围绕分享了自己的心得和体会,以及对产业现状的深刻洞察。认为,不仅是一种艺术形式,更是一种生活方式。他鼓励年轻人要勇于追求自己的音乐梦想,同时也要关注音乐产业的发展趋势,为音乐产业的繁荣贡献自己的力量…

自动预约申购 i茅台工具完善

自动预约申购茅台工具 概述新的改变界面预览 概述 今天刷到一个windows自动刷茅台的工具,是用wpf实现的,看到作者最后是2023年更新的,评论中有好多人提出一些需求,刚才在学习wpf,就试着完善了一下。 工具下载&#x…

分布式系列之限流组件

概述 在高并发场景下,请求量瞬间到达,后端服务器即使有缓存、集群主备、分库分表、容错降级等措施,也有可能扛不住这请求量,因此可考虑引入限流组件。限流的目的:防止恶意请求流量或流量超出系统承载。 应用场景&…

DEtection TRansformer (DETR)与YOLO在目标检测方面的比较

1. 概述 计算机视觉中的目标检测是一个复杂而有趣的领域,它涉及到让计算机能够识别图像中的物体,并确定它们的位置。下面是DETR和YOLO这两种目标检测方法简单比较: 1.1 YOLO YOLO是一种非常流行的目标检测算法,它的核心思想是将…