分布式系列之限流组件

概述

在高并发场景下,请求量瞬间到达,后端服务器即使有缓存、集群主备、分库分表、容错降级等措施,也有可能扛不住这请求量,因此可考虑引入限流组件。限流的目的:防止恶意请求流量或流量超出系统承载。

应用场景:

  • 网关层校验流量,拦截非法请求,或直接抛弃部分流量(后来的流量,如秒杀系统)
  • 实时场景下的数据迁移或复制(如Kafka分区重分配)

本文从限流算法、限流环节、限流框架几个层次加以讲述。

限流算法

主要有两大类:窗口算法(也有叫做计数器算法的,思想其实很类似,包括固定窗口算法和滑动窗口算法)、桶算法(包括漏桶算法、令牌桶算法)。

计数器算法

该算法会维护一个counter,规定在单位时间内counter的大小不能超过最大值,每隔固定时间就将counter的值置零。如果这个counter大于设定的阈值,那么系统就开始拒绝请求以保护系统的负载。

固定窗口

固定窗口就是指定的单位时间,比如一分钟,限制次数为Max,则最大值为Max,超过Max的请求被抛弃。存在临界问题:单位时间的左区间可能有大量请求,直接超过Max。

/**
 * 指定过期时间自增计数器,默认每次+1,非滑动窗口
 *
 * @param key 计数器自增key
 * @param expireTime 过期时间
 * @param unit  时间单位
 */
public long incrCount(String key, int expireTime, TimeUnit unit);

/**
 * 指定过期时间自增计数器,单位时间内超过最大值rateThreshold返回true,否则返回false
 *
 * @param key 限流key
 * @param rateThreshold 限流阈值
 * @param expireTime 固定窗口时间
 * @param unit 时间单位
 */
public boolean rateLimit(final String key, final int rateThreshold, int expireTime, TimeUnit unit);

滑动窗口

固定窗口可看成是滑动窗口的特例。滑动窗口将固定窗口再等分为多个小的窗口,每一次对一个小的窗口进行流量控制。可解决固定窗口的临界问题。

漏桶算法

Leaky Bucket,水(请求)先进入到漏桶(预先维护的容量固定)里,漏桶以一定的速度出水(接口有响应速率),当水流入速度过大会直接溢出(访问频率超过接口响应速率),然后就拒绝请求,漏桶算法能强行限制数据的传输速率。
在这里插入图片描述
核心:请求来以后,直接进桶,然后桶根据自己的漏洞大小慢慢往外面漏。使用一个FIFO的队列,一端负责不断的放入请求,另外一端负责吐出请求。

好处:可将系统的处理能力维持在一个比较平稳的水平
缺点:不能应对实际场景,比如突然暴增的流量。

令牌桶算法

Token Bucket Algorithm,用于限制速率。

令牌桶会以一个恒定的速率(预定义)向固定容量(要限制流量的大小)大小桶中放入令牌,当有流量来时则取走一个或多个令牌。当桶中没有令牌则将当前请求丢弃或阻塞等待,直到有足够的令牌为止。可实现平滑突发限流,允许一定的突发请求,但总体速率会保持在设定的限制内。
在这里插入图片描述
参考实现:Guava RateLimiter

漏桶算法和令牌桶算法对比

令牌桶算法和漏桶算法的不同之处在于处理瞬间到达的大流量的不同:

  • 令牌桶算法由于在令牌桶里攒很多令牌,因此在大流量到达一瞬间可以一次性将队列中所有的请求都处理完,然后按照恒定的速度处理请求;
  • 漏桶算法则一直有一个恒等的阈值,在大流量到达时,也会将多余的请求拒绝。

限流环节

限流从环节(也有叫粒度)来分析,有:网关限流,服务限流,接口限流。

网关限流

网关,即接入层,是请求流量的入口,一般可考虑使用Nginx限流。

Nginx自带两个模块:

  • 连接数限流模块:ngx_http_limit_conn_module(简称limit_conn,如果读者们在某些书籍或Blog里看到这个简称,就表示这个模块)
  • 请求限流模块:基于漏桶算法实现,ngx_http_limit_req_module(简称limit_req,同上)。

此外,可以使用OpenResty提供的lua限流模块lua-resty-limit-traffic,以及tengine增强版httplimitreqcn。

limit_conn

limit_conn模块用于限制连接数量,特别是来自单个IP地址的连接数量。并非所有的连接都被计数。只有当服务器处理完请求且已经读取整个请求头时,连接才被计数。

官网的示例配置:

http {
    limit_conn_zone $binary_remote_addr zone=addr:10m;
    server {
    	location /download/ {
        	limit_conn addr 1;
        }	
    }
}

配置解读:
limit_conn_zone $binary_remote_addr zone=addr:10m;:为共享内存区域设置参数,该区域将保留各种Key键的状态。状态包含当前的连接数。Key可以包含文本,变量,他们的组合。只能用于http语法块。

$binary_remote_addr:对于IPv4地址,变量的大小始终为4个字节,对于IPv6地址则为16个字节。存储状态在32位平台上始终占用32或64个字节,在64位平台上占用64个字节。一个兆字节的区域可保存大约32000个32字节的状态或大约16000个64字节的状态。如果区域存储耗尽,服务器会将错误返回给所有其他请求。10M可存储160000个状态。

limit_conn addr 1:设置给定键值的共享内存区域和最大允许连接数。超过此限制时,服务器将返回503错误以回复请求。用于http,server,location这些语法块内。

limit_req

用于限制每一个请求的处理速率,即每个IP地址的请求的处理速率。

官网的示例配置:

http {
    limit_req_zone $binary_remote_addr zone=one:10m rate=1r/s;
    server {
        location /search/ {
            limit_req zone=one burst=5;
        }
}

配置解读:
limit_req_zone $binary_remote_addr zone=one:10m rate=1r/s;:区域名称为one,大小为10m,平均处理的请求频率不能超过每秒一次。键值是客户端IP,$binary_remote_addr变量,可以将每条状态记录的大小减少到64个字节,这样1M的内存可以保存大约1万6千个64字节的记录。如果限制域的存储空间耗尽,对于后续所有请求,服务器都会返回503错误。

limit_req zone=one burst=5;:平均每秒不超过1个请求,并且突发不超过5个请求。超过处理能力范围的,直接drop,表现为对收到的请求无延时。

服务限流

应用级别,对应用里涉及到的所有的接口类和方法都增加限流机制。

接口限流

接口层次的限流,粒度最小,用于某个Controller类或方法,

限流框架

Guava RateLimiter

Guava提供的抽象类RateLimiter源码很长,略。用于限制方法的调用频率,它基于令牌桶算法

其实现类有两个,对应两种限流模式:

  1. SmoothBursty:稳定模式,令牌生成速度恒定,平滑突发限流;
  2. SmoothWarmingUp:渐进模式,令牌生成速度缓慢提升直到维持在一个稳定值,平滑预热限流

两种模式实现思路类似,主要区别在等待时间的计算上。

局限性:

  1. 仅适用于单体应用
  2. 不保证公平性访问

Spring Cloud GateWay

需要引入依赖:

<dependency>
    <groupId>org.springframework.cloud</groupId>
    <artifactId>spring-cloud-starter-gateway</artifactId>
</dependency>
<!--基于 reactive stream 的redis -->
<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-redis-reactive</artifactId>
</dependency>

引入spring-cloud-starter-gateway后,则引入子依赖spring-cloud-gateway-server,后者源码里带有request_rate_limiter.lua脚本:
在这里插入图片描述
配置:

spring:
  cloud:
    gateway:
      routes:
        - id: requestratelimiter_route
          uri: lb://gateway-demo
          order: 10000
          predicates:
          - Path = /admin/**
          filters:
          - name: RequestRateLimiter
            args:
              redis-rate-limiter.replenishRate: 1 # 流速每秒1个
              redis-rate-limiter.burstCapacity: 3 # 令牌桶容积
              key - resolver: "#{@remoteAddrKeyResolver}" # SPEL表达式去的对应的bean
          - StripPrefix = 1

配置Bean方法,多维度限流量的入口:

@Bean
KeyResolver remoteAddrKeyResolver() {
    return exchange -> Mono.just(exchange.getRequest().getRemoteAddress().getHostName());
}

GateWay提供RateLimiter接口,AbstractRateLimiter抽象类,以及实现类RedisRateLimiter,接口主要有一个方法Mono<Response> isAllowed(String routeId, String id);,RedisRateLimter核心源码:

public Mono<Response> isAllowed(String routeId, String id) {
    Config routeConfig = getConfig().getOrDefault(routeId, defaultConfig);
    int replenishRate = routeConfig.getReplenishRate();
    int burstCapacity = routeConfig.getBurstCapacity();
    try {
        List<String> keys = getKeys(id);
        /* returns unixtime in seconds.*/
        List<String> scriptArgs = Arrays.asList(replenishRate + "", burstCapacity + "", Instant.now().getEpochSecond() + "", "1");
        // 核心,执行redis LUA脚本
        Flux<List<Long>> flux = this.redisTemplate.execute(this.script, keys, scriptArgs);
        return flux.onErrorResume(throwable -> Flux.just(Arrays.asList(1L, -1L))).reduce(new ArrayList<Long>(), (longs, l) -> {
            longs.addAll(l);
            return longs;
        }).map(results -> {
            boolean allowed = results.get(0) == 1L;
            Long tokensLeft = results.get(1);
            Response response = new Response(allowed, getHeaders(routeConfig, tokensLeft));
            if (log.isDebugEnabled()) {
                log.debug("response: " + response);
            }
            return response;
        });
    } catch (Exception e) {
        log.error("Error determining if user allowed from redis", e);
    }
    return Mono.just(new Response(true, getHeaders(routeConfig, -1L)));
}

Sentinel

另起一篇,参考服务容错框架Sentinel入门。

Bucket4j

Bucket4j是一个基于令牌桶算法实现的强大的限流库,支持单机限流,还支持通过诸如Hazelcast、Ignite、Coherence、Infinispan或其他兼容 JCache API(JSR 107)规范的分布式缓存实现分布式限流。

3个核心概念:Bucket、Bandwidth、Refill。

Bucket:接口,代表令牌桶的具体实现,操作的入口。提供诸如tryConsumetryConsumeAndReturnRemaining方法用于消费令牌。可通过下面的构造方法来创建Bucket:

Bucket bucket = Bucket4j.builder().addLimit(limit).build();
if (bucket.tryConsume(1)) {
    log.info("ok");
} else {
    log.info("error");
}

Bandwidth:带宽,可理解为限流规则。Bucket4j提供两种方法来创建Bandwidth:

  • simple:桶大小和填充速度是一样的,表示桶大小为10,填充速度为每分钟10个令牌:
Bandwidth limit = Bandwidth.simple(10, Duration.ofMinutes(1));
  • classic:更灵活,可自定义填充速度:
// 贪婪策略:桶大小为10,填充速度为每分钟5个令牌;
Refill filler = Refill.greedy(5, Duration.ofMinutes(1));
Bandwidth limit = Bandwidth.classic(10, filler);

Refill:用于填充令牌桶,可以通过它定义填充速度,Bucket4j有两种填充令牌的策略:

  • intervally:间隔策略。间隔策略创建Refill:Refill filler = Refill.intervally(5, Duration.ofMinutes(1));// 每隔一分钟,填充 5 个令牌
    所谓间隔策略指的是每隔一段时间,一次性的填充所有令牌。
  • greedy:贪婪策略,参考上面的简单例子

Resilience4j

Resilience4j是一款轻量级、易使用的高可用框架,设计灵感就来自于Netflix Hystrix。自从Hystrix停止维护之后,官方也推荐使用Resilience4j来代替Hystrix。

Resilience4j的底层采用Vavr(一个非常轻量级的Java函数式库),以装饰器模式提供对函数式接口或lambda表达式的封装,提供高可用机制:重试(Retry)、熔断(Circuit Breaker)、限流(RateLimiter)、限时(Timer Limiter)、隔离(Bulkhead)、缓存(Cache)和降级(Fallback)。

其中,RateLimiter是请求频率限流,Bulkhead是并发量限流。

Resilience4j提供两种限流的实现:SemaphoreBasedRateLimiter和AtomicRateLimiter。SemaphoreBasedRateLimiter基于信号量实现,用户的每次请求都会申请一个信号量,并记录申请的时间,申请通过则允许请求,申请失败则限流,另外有一个内部线程会定期扫描过期的信号量并释放,很显然这是令牌桶的算法。AtomicRateLimiter和上面的经典实现类似,不需要额外的线程,在处理每次请求时,根据距离上次请求的时间和生成令牌的速度自动填充。

Resilience4j也提供两种隔离的实现:SemaphoreBulkhead和ThreadPoolBulkhead,通过信号量或线程池控制请求的并发数。

同时使用限流和隔离的例子:

// 创建一个Bulkhead,最大并发量为150
BulkheadConfig bulkheadConfig = BulkheadConfig.custom()
    .maxConcurrentCalls(150)
    .maxWaitTime(100)
    .build();
Bulkhead bulkhead = Bulkhead.of("backendName", bulkheadConfig);
 
// 创建RateLimiter,每秒允许一次请求
RateLimiterConfig rateLimiterConfig = RateLimiterConfig.custom()
    .timeoutDuration(Duration.ofMillis(100))
    .limitRefreshPeriod(Duration.ofSeconds(1))
    .limitForPeriod(1)
    .build();
RateLimiter rateLimiter = RateLimiter.of("backendName", rateLimiterConfig);
 
// 使用Bulkhead和RateLimiter装饰业务逻辑
Supplier<String> supplier = () -> backendService.doSomething();
Supplier<String> decoratedSupplier = Decorators.ofSupplier(supplier)
  .withBulkhead(bulkhead)
  .withRateLimiter(rateLimiter)
  .decorate();
 
// 调用业务逻辑
Try<String> try = Try.ofSupplier(decoratedSupplier);
assertThat(try.isSuccess()).isTrue();

Resilience4j在功能特性上比Bucket4j强大不少,而且还支持并发量限流,但不支持分布式限流。

拓展

TimeLimiter和RateLimiter

除了RateLimiter,在Guava包里还有个TimeLimiter接口:

@DoNotMock("Use FakeTimeLimiter")
@ElementTypesAreNonnullByDefault
@J2ktIncompatible
@GwtIncompatible
public interface TimeLimiter {
    <T> T newProxy(T target, Class<T> interfaceType, long timeoutDuration, TimeUnit timeoutUnit);

    default <T> T newProxy(T target, Class<T> interfaceType, Duration timeout) {
        return this.newProxy(target, interfaceType, Internal.toNanosSaturated(timeout), TimeUnit.NANOSECONDS);
    }

    @ParametricNullness
    @CanIgnoreReturnValue
    <T> T callWithTimeout(Callable<T> callable, long timeoutDuration, TimeUnit timeoutUnit) throws TimeoutException, InterruptedException, ExecutionException;

    @ParametricNullness
    @CanIgnoreReturnValue
    default <T> T callWithTimeout(Callable<T> callable, Duration timeout) throws TimeoutException, InterruptedException, ExecutionException {
        return this.callWithTimeout(callable, Internal.toNanosSaturated(timeout), TimeUnit.NANOSECONDS);
    }

    @ParametricNullness
    @CanIgnoreReturnValue
    <T> T callUninterruptiblyWithTimeout(Callable<T> callable, long timeoutDuration, TimeUnit timeoutUnit) throws TimeoutException, ExecutionException;

    @ParametricNullness
    @CanIgnoreReturnValue
    default <T> T callUninterruptiblyWithTimeout(Callable<T> callable, Duration timeout) throws TimeoutException, ExecutionException {
        return this.callUninterruptiblyWithTimeout(callable, Internal.toNanosSaturated(timeout), TimeUnit.NANOSECONDS);
    }

    void runWithTimeout(Runnable runnable, long timeoutDuration, TimeUnit timeoutUnit) throws TimeoutException, InterruptedException;

    default void runWithTimeout(Runnable runnable, Duration timeout) throws TimeoutException, InterruptedException {
        this.runWithTimeout(runnable, Internal.toNanosSaturated(timeout), TimeUnit.NANOSECONDS);
    }

    void runUninterruptiblyWithTimeout(Runnable runnable, long timeoutDuration, TimeUnit timeoutUnit) throws TimeoutException;

    default void runUninterruptiblyWithTimeout(Runnable runnable, Duration timeout) throws TimeoutException {
        this.runUninterruptiblyWithTimeout(runnable, Internal.toNanosSaturated(timeout), TimeUnit.NANOSECONDS);
    }
}

其实现类有:

  • SimpleTimeLimiter:
  • FakeTimeLimiter:

TimeLimiter用于限制方法的执行时间,原理:

  • 创建代理对象:为指定的对象创建一个代理对象
  • 方法拦截:当调用代理对象的方法时,TimeLimiter会拦截调用,并在一个单独的线程中执行实际方法
  • 超时监控:使用定时器来监控方法的执行时间。如果方法执行超过指定的时间限制,TimeLimiter会中断该线程,并抛出一个TimeoutException

TimeLimiter可确保方法不会因为执行时间过长而阻塞其他操作。有如下使用场景:

  • 网络调用:限制网络请求的最大时间,防止由于网络延迟导致的长时间阻塞
  • 复杂计算:在后台执行复杂计算任务时,设置一个时间限制以确保任务不会无限期地运行
  • 资源获取:限制资源获取操作的时间,如数据库连接、文件读写等。

TimeLimiter的一个简单实例:

public void test() {
    TimeLimiter timeLimiter = SimpleTimeLimiter.create();
    Callable<String> callable = () -> {
        // Simulate long running task
        Thread.sleep(2000);
        return "Task Completed";
    };
    try {
        String result = timeLimiter.callWithTimeout(callable, 1, TimeUnit.SECONDS);
        System.out.println(result);
    } catch (UncheckedTimeoutException e) {
		// just logging or handle exception
    } catch (Exception e) {
	    // just logging or handle exception
    }
}

TimeLimiter和RateLimiter的区别

  • 用途:TimeLimiter用于限制方法的执行时间,防止长时间运行的操作阻塞程序。RateLimiter用于限制方法的调用频率,控制流量,防止系统过载
  • 实现机制:TimeLimiter基于创建代理对象和超时监控,通过定时器中断执行时间过长的任务。RateLimiter基于令牌桶算法,通过生成和消耗令牌来控制请求的执行频率。
  • 使用场景:TimeLimiter适用于需要对单个任务的执行时间进行严格控制的场景。RateLimiter适用于需要对系统整体调用频率进行控制的场景。

Kafka

Kafka在时使用到复制限流技术,防止集群中某个主题或某个分区的流量在某段时间内特别大,分区数据复制造成数据丢失或分区节点异常。

ZooKeeper

ZK也提供一个RateLimiter的简易实现版本。

分布式限流

参考

  • 亿级流量网站架构核心技术
  • 实战Spring Cloud Gateway之限流篇

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/739075.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

DEtection TRansformer (DETR)与YOLO在目标检测方面的比较

1. 概述 计算机视觉中的目标检测是一个复杂而有趣的领域&#xff0c;它涉及到让计算机能够识别图像中的物体&#xff0c;并确定它们的位置。下面是DETR和YOLO这两种目标检测方法简单比较&#xff1a; 1.1 YOLO YOLO是一种非常流行的目标检测算法&#xff0c;它的核心思想是将…

IDEA 2024.01版本 git分支merge合并

使用idea工具来进行merge合并 1、拉取远端分支信息 2、我的分支是sprint-240627,我要将test分支合并到我这个分支上 找到test分支 3、选择【Merge origin/test into sprint-240627】 从test合并到我们要合并得分支上&#xff0c;结束 4、如果有冲突&#xff0c;就解决冲突即可…

5. zabbix分布式监控

zabbix分布式监控 一、zabbix分布式监控二、zabbix分布式监控部署1、环境描述2、zabbix proxy的部署2.1 安装zabbix proxy相关的软件2.2 创建proxy需要的库、导入表2.3 编辑zabbix proxy配置文件&#xff0c;指定数据库连接2.4 启动zabbix proxy 3、在zabbix server添加代理4、…

基于 ROS 的 Terraform 托管服务轻松部署文本转语音系统 ChatTTS

介绍 ChatTTS是专门为对话场景设计的文本转语音模型&#xff0c;例如LLM助手对话任务。它支持英文和中文两种语言。最大的模型使用了10万小时以上的中英文数据进行训练。ChatTTS webUI & API 为 ChatTTS 提供了网页界面和API服务。 资源编排服务&#xff08;Resource Orc…

竞赛选题 python opencv 深度学习 指纹识别算法实现

1 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; python opencv 深度学习 指纹识别算法实现 &#x1f947;学长这里给一个题目综合评分(每项满分5分) 难度系数&#xff1a;3分工作量&#xff1a;4分创新点&#xff1a;4分 该项目较为新颖…

.locked勒索病毒详解 | 防御措施 | 恢复数据

引言 在数字化飞速发展的今天&#xff0c;我们享受着信息技术带来的便捷与高效&#xff0c;然而&#xff0c;网络安全问题也随之而来&#xff0c;且日益严重。其中&#xff0c;勒索病毒以其狡猾的传播方式和巨大的破坏性&#xff0c;成为了网络安全领域中的一大难题。.locked勒…

创新、引领、发展——SAMPE中国2024年会在京盛大开幕

绿树阴浓夏日长&#xff0c;在这个色彩缤纷的季节&#xff0c;SAMPE中国2024年会暨第十九届国际先进复合材料制品原材料、工装及工程应用展览会在中国国际展览中心&#xff08;北京朝阳馆&#xff09;隆重开幕。新老朋友共聚一堂&#xff0c;把酒话桑麻。 为期4天的国际学术会…

TensorRT-LLM加速框架的基本使用

TensorRT-LLM是英伟达发布的针对大模型的加速框架&#xff0c;TensorRT-LLM是TensorRT的延申。TensorRT-LLM的GitHub地址是 https://github.com/NVIDIA/TensorRT-LLM 这个框架在0.8版本有一个比较大的更新&#xff0c;原先的逻辑被统一了&#xff0c;所以早期的版本就不介绍了…

使用鸿蒙HarmonyOs NEXT 开发b站的卡片效果 手把手教学

资源准备&#xff1a; 需要4张图片&#xff1a;分别是页面图&#xff0c;播放图标&#xff0c;评论图标&#xff0c;更多图标 1.实现效果显示&#xff1a; 2.教学视频&#xff1a; 使用鸿蒙HarmonyOs NEXT 开发b站卡片_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1…

FPGA的基础仿真项目--七段数码管设计显示学号

一、设计实验目的 1&#xff0e; 了解数码管显示模块的工作原理。 2&#xff0e; 熟悉VHDL 硬件描述语言及自顶向下的设计思想。 3&#xff0e; 掌握利用FPGA设计6位数码管扫描显示驱动电路的方法。 二、实验设备 1. PC机 2.Cyclone IV FPGA开发板 三、扫描原理 下图所…

git检查别人提交的PR(pull requests)并在本地验证,然后合并

可以看官方流程&#xff1a;Checking out pull requests locally - GitHub Docs 当别人给你的开源仓库提交了pull request&#xff0c;你该怎么检查别人提交的代码是否可用&#xff0c;然后合并上去呢&#xff1f;今天我就遇到了&#xff0c;就在前不久开源项目douyin-live失败…

Day5 —— 电商日志数据分析项目

项目二 _____&#xff08;电商日志数据分析项目&#xff09; 引言需求分析详细思路统计页面浏览量Map阶段Reduce阶段 日志的ETL操作Map阶段Reduce阶段 统计各个省份的浏览量Map阶段Reduce阶段 具体步骤统计页面浏览量日志的ETL操作统计各个省份的浏览量工具类&#xff08;utils…

mac鼠标和触摸屏单独设置滚动方向

引言&#xff1a;mac很好用&#xff0c;但是外接鼠标的滚动方向和win不一样&#xff0c;总有点不习惯。于是想要设置一下&#xff0c;当打开设置&#xff0c;搜索鼠标时&#xff0c;将“自然滚动”取消&#xff0c;就可以更改了。 问题&#xff1a;但触摸屏又不好用了。 原因&a…

无线麦克风哪个好?分享口碑最好的麦克风品牌

在这个自媒体时代&#xff0c;给了普通人很多的机会&#xff0c;尤其短视频的兴起更是让无数热情&#xff0c;有创作之心的人跃跃欲试。于是乎越来越多的人纷纷拿起了手机到各个平台去展示自己的才华&#xff0c;或者通过vlog记录分享自己的简单生活。可是在分享和创作的输出时…

ESP32 esp-idf esp-adf环境安装及.a库创建与编译

简介 ESP32 功能丰富的 Wi-Fi & 蓝牙 MCU, 适用于多样的物联网应用。使用freertos操作系统。 ESP-IDF 官方物联网开发框架。 ESP-ADF 官方音频开发框架。 文档参照 https://espressif-docs.readthedocs-hosted.com/projects/esp-adf/zh-cn/latest/get-started/index.…

Spring底层原理之bean的加载方式一 用XML方式声明bean 自定义bean及加载第三方bean 2024详解

目录 用XML方式声明bean 首先我们创建一个空的java工程 我们要导入一个spring的依赖 注意在maven工程里瞅一眼 我们创建一个业务层接口 还有四个实现类 我们最初的spingboot生命bean的方式是通过xml声明 我们在resources文件夹下创建一个配置文件 我们书写代码 首先初…

移动硬盘盒:便携与交互的完美结合 PD 充电IC

在数字化时代的浪潮中&#xff0c;数据已成为我们生活中不可或缺的一部分。随着数据的不断增长&#xff0c;人们对于数据存储的需求也在不断增加。传统的存储设备如U盘、光盘等&#xff0c;虽然具有一定的便携性&#xff0c;但在容量和稳定性方面往往难以满足现代人的需求。而移…

若依框架下拉单选框根据js动态加载,如何使select2的下拉搜素功能同时生效(达到select下拉框的样式不变的效果)

直接上代码&#xff0c;不废话 $(select[name"sealType"]).change(function (event) {let value event.target.valuequeeryDeptListBySealType(value)})// 获取科目信息function queeryDeptListBySealType(value){$.ajax({type: "post",url: prefix &quo…

竞赛选题 python+opencv+深度学习实现二维码识别

0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; pythonopencv深度学习实现二维码识别 &#x1f947;学长这里给一个题目综合评分(每项满分5分) 难度系数&#xff1a;3分工作量&#xff1a;3分创新点&#xff1a;3分 该项目较为新颖&…

Mac提示此电脑不能读取您插的磁盘的原因,Mac磁盘无法读取内容怎么处理

为了能在不同设备中快速传输大容量的文件&#xff0c;我们常常会使用到外接磁盘进行文件的传输。但由于各种原因&#xff0c;比如硬件、文件系统格式等问题&#xff0c;Mac电脑插磁盘会出现无法读取的问题。本文会介绍Mac提示此电脑不能读取您插的磁盘的原因&#xff0c;以及Ma…