MapReduce程序设计2

要求

1、数据集stock-daily,包含A股近4000只股票的今年以来的日数据;数据集stock-daily-30d仅包含最近30个交易日数据,根据自己计算机性能选择。

数据来源:https://www.joinquant.com/help/api/help?name=JQData

2、数据集stock-concept,包含A股近4000只股票所有的股票代码、名称和概念。

数据来源:万德金融终端

根据此stock-daily数据集计算每只股票的5日滚动收益为正的概率,滚动收益:某个投资标的(如:股票、基金、黄金、期货、债券、房子等)在任意时刻进入后持有固定时间,如:5日(一周)、22日(一月)、44日(两月)、66日(一季度)、123日(半年)、245日(一年)等。后获取的收益,是描述某个投资标的赚钱概率的数学模型,也可用来衡量股票、基金、债券等证券的业绩。

3、滚动收益率计算方法:

(1) 忽略N/A所在日的股票数据,思考:可使用插值算法填充异常N/A数据,但退市股票同样会造成N/A数据,需要识别那种数据是退市造成的,而哪种数据是异常形成的。

(2)第t日的5日滚动收益

Rt= (Ct - Ct-5 ) / Ct-5 ,Ct:第t日收盘价    Rt:第t日滚动收益

(3) 5日滚动正收益率

       所有交易日的5日滚动收益为正(赚钱)的概率

* 所有计算忽略非交易日(节假日)

数据集

 代码

配置pom文件和建包

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
 
    <groupId>org.example</groupId>
    <artifactId>stock_daily</artifactId>
    <version>1.0-SNAPSHOT</version>
 
    <properties>
        <maven.compiler.source>8</maven.compiler.source>
        <maven.compiler.target>8</maven.compiler.target>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
    </properties>
    <dependencies>
        <!-- https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-hdfs -->
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-hdfs</artifactId>
            <version>3.1.2</version>
            <scope>test</scope>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-client -->
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>3.1.2</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-common -->
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-common</artifactId>
            <version>3.1.2</version>
        </dependency>
        <dependency>
            <groupId>org.apache.commons</groupId>
            <artifactId>commons-configuration2</artifactId>
            <version>2.7</version>
        </dependency>
        <dependency>
            <groupId>org.slf4j</groupId>
            <artifactId>slf4j-api</artifactId>
            <version>1.7.30</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-common</artifactId>
            <version>3.1.2</version>
        </dependency>
    </dependencies>
</project>

 

MapReduce任务类

创建类继承Configured类实现Tool接口

重写run方法,配置mepreduce的相关内容,指定mapreducegroup类。并启动job

Map类继承mapper类,指定输入和输出格式

基本代码逻辑为将输入的文件按行切割,然后按照元素位置取出对应的元素,将股票代码和时间封装到CodeTimeTuple类里面作为键,将收盘价作为值写入到context里面交给reduce类。这里日期转换用了SipleDataFormat类进行转换,设置格式为yyyy-MM-dd HHmmss

CodeTimeTuple

里面设置两个属性,一个是time,一个是code。这个类的读取和写入都要采用字节流的方式。在这里还要实现比较的方法以便实现后面的组排序,排序分为两次,一次是根据股票代码排序,如果股票代码相同再根据时间进行排序。

组排序类

将排序对象转化为CodeTimeTuple类调用排序方法

Reduce

将排完序的内容拉取过来,设置一个数组来存取每一天的收盘价(为后面计算滚动收益做准备),遍历容器,每只股票前四天的收盘价直接作为收益,后面的收盘价计算公式为Rt= (Ct - Ct-5 ) / Ct-5 ,Ct:第t日收盘价     Rt:第t日滚动收益。然后计算收益为正的概率。

完整代码

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import java.io.IOException;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Date;

/**
 * Calculate the stock five days' roll yield.
 * */
public class RollYield extends Configured implements Tool {
    /**
     * The entrance of the program
     * @param args are used as the path parameter from the terminal.
     * */
    public static void main(String[] args) throws Exception {
        int res = ToolRunner.run(new RollYield(),args);
        System.exit(res);
    }//of main
    /**
     * Set the map class and reduce class and construct the job.
     * */
    @Override
    public int run(String[] args) throws Exception {
        //build Configuration class to manage the configuration file of the hadoop
        Configuration conf = new Configuration();

        //Construct the job
        System.out.println("-----------创建和配置Job-------------");
        Job job = Job.getInstance(conf,"RollYield");

        //indicate the class of the Job
        job.setJarByClass(RollYield.class);

        //indicate the class of the Map and Reduce
        job.setMapperClass(yieldMapper.class);
        job.setReducerClass(yieldReduce.class);
        //job.setCombinerClass(yieldReduce.class);

        //indicate the format of the input:Text type file
        job.setInputFormatClass(TextInputFormat.class);
        TextInputFormat.addInputPath(job, new Path(args[0]));

        //set the Grouping sort class which has the sort method.
        job.setGroupingComparatorClass(GroupSort.class);

        //indicate the format of the output:key is text,value is double.
        job.setOutputFormatClass(TextOutputFormat.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(FloatWritable.class);

        job.setMapOutputKeyClass(CodeTimeTuple.class);
        job.setMapOutputValueClass(FloatWritable.class);
        TextOutputFormat.setOutputPath(job,new Path(args[1]));

        //Execute the mapreduce
        boolean res = job.waitForCompletion(true);
        if(res){
            return 0;
        }//of if
        else{
            return -1;
        }//of else
    }//of run
    /**
     * The map class for converting the input data into key-value pair.
     */
    public static class yieldMapper extends Mapper<LongWritable,Text,CodeTimeTuple, FloatWritable> {
        /**
         * the map method is used for dispose the data and
         * */
        @Override
        public void map(LongWritable key,Text value,Context context) throws IOException, InterruptedException {
            String line = value.toString();
            //ignore the empty line and rows of invalid data.
            if(line.contains("N/A")){
                return;
            }//of if
            //split every line of the file into a string array.
            String[] fields =line.split("\t");
            try {
                if(fields.length>=13){
                    //according to the position to get the corresponding value
                    float closePrice = Float.parseFloat(fields[3]);
                    //put the code and the date into the timeTuple.
                    CodeTimeTuple timeTuple = new CodeTimeTuple();
                    timeTuple.setCode(new Text(fields[0]));
                    //convert the date into timestamp for the sort.
                    Date date = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").parse(fields[13]+" 00:00:00");
                    timeTuple.setTime(new LongWritable(date.getTime()));
                    context.write(timeTuple,new FloatWritable(closePrice));
                }//of if
            }//of try
            catch (ParseException e) {
                System.out.println(line);
                System.out.println(e.getMessage());
            }//of catch
        }//of map
    }//of class
    /**
     *
     */
    public static class GroupSort extends WritableComparator {
        /**
         * construct method
         * */
        protected GroupSort() {
            super(CodeTimeTuple.class, true);
        }
        /**
         * sort the two timeTuple
         * */
        @Override
        public int compare(WritableComparable a, WritableComparable b) {
            CodeTimeTuple key1 = (CodeTimeTuple)a;
            CodeTimeTuple key2 = (CodeTimeTuple)b;
            return key1.compareTo(key2);
        }//of compare
    }//of class GroupSort

    /**
     *
     * */
    public static class yieldReduce extends Reducer<CodeTimeTuple,FloatWritable,Text,FloatWritable>{
        /**
         *
         * */
        @Override
        public void reduce(CodeTimeTuple key,Iterable<FloatWritable> values,Context context) throws IOException, InterruptedException {
            //use the array to record the closePrice of everyday
            float[] PriceOfEveryday = new float[1000];
            int i = 0;
            //the days which has the positive yield.
            int positiveDays = 0;
            for (FloatWritable val:values){
                float currentPrice = val.get();
                PriceOfEveryday[i] = currentPrice;
                if(i<=4){
                    if(currentPrice>0){
                        positiveDays++;
                    }
                }//of if
                else{
                    if(currentPrice-PriceOfEveryday[i-5]>0){
                        positiveDays++;
                    }//of if
                }//of else
                i++;
            }//of for
            context.write(new Text(key.getCode()),new FloatWritable((float) positiveDays /(i+1)));
        }//of reduce
    }//of class yieldReduce
}//of class RollYield

 

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.WritableComparable;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

//自定义Tuple
public class CodeTimeTuple implements WritableComparable<CodeTimeTuple> {

    private LongWritable time = new LongWritable();
    private Text code = new Text();

    public LongWritable getTime() { return time; }

    public void setTime(LongWritable time) { this.time = time; }

    public Text getCode() { return code; }

    public void setCode(Text code) { this.code = code; }

    //写入数据至流
    //用于框架对数据的处理
    //注意读readFields和写write的顺序一致
    public void write(DataOutput dataOutput) throws IOException {
        code.write(dataOutput);
        time.write(dataOutput);
    }

    //从流中读取数据
    //将框架返回的数据提取出到对应属性中来
    //注意读readFields和写write的顺序一致
    public void readFields(DataInput dataInput) throws IOException {
        code.readFields(dataInput);
        time.readFields(dataInput);
    }

    //Key排序
    public int compareTo(CodeTimeTuple o) {
        //一次排序:股票代码排序(这里要与组排序逻辑相同)
        int cmp = this.getCode().compareTo(o.getCode());
        //如果股票代码相同,则按时间排序
        if(cmp != 0)
            return cmp;
        //二次排序:时间排序,结果乘以-1则降序排列,否则为升序排列
        return -this.getTime().compareTo(o.getTime());
    }
}

创建jar包和打包上传到hadoop

启动job

ps:

由于启用combine必须要求reduce的输出跟输入类型相对应,但是这里的reduce输出和输入类型不一样,所以要么重写一个combine类,要么直接不使用combine类,我选择的第二种,所以combine没有输入输出,但是会加重reduce的负担。原因是combine相当于一个小的reduce,所以也会有输入输出类型,且和指定的类有关,所以执行会报reduce输入不匹配的问题。

打印输出的内容在logs下面的userlog里面,也可以在集群的网页上面看,有对应的log文件。

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/736220.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

每日签到页面模板组件,简单好用,用了会上瘾的那种

uni-app 是一个使用 Vue.js 开发所有前端应用的框架&#xff0c;开发者编写一套代码&#xff0c;可发布到iOS、Android、Web&#xff08;响应式&#xff09;、以及各种小程序&#xff08;微信/支付宝/百度/头条/飞书/QQ/快手/钉钉/淘宝&#xff09;、快应用等多个平台。 今日给…

基于S7-200PLC的全自动洗衣机控制系统设计

wx供重浩&#xff1a;创享日记 那边对话框发送&#xff1a;plc洗衣 获取完整无水印设计说明报告&#xff08;含程序梯形图&#xff09; 1.自动洗衣机PLC控制的控制要求 1.1全自动洗衣机的基本结构、工作流程和工作原理 1.自动洗衣机的基本结构 2.自动洗衣机的工作流程 自动洗…

理解 iOS 开发中的 NS_ENUM 和 NS_OPTIONS

在开发 iOS 应用程序时&#xff0c;理解 NS_ENUM 和 NS_OPTIONS 的使用至关重要&#xff0c;因为它们在定义和管理枚举和选项方面起着重要作用。在本文中&#xff0c;我们将深入探讨 NS_ENUM 和 NS_OPTIONS 之间的区别、使用场景以及如何有效地实现它们。 NS_ENUM NS_ENUM 用…

Linux的基本指令第二篇

1.cat - 查看文件 语法&#xff1a;cat [选项] [文件] 功能&#xff1a; 查看目标文件的内容 -b 对非空输出行编号 -n对输出的所有行编号 -s不输出多行空行 现有一个文件test.c cat -n test.c cat -b test.c cat -s test.c 创建一个新文件 加入源文件的内容 || …

啥移动硬盘格式能更好兼容Windows和Mac系统 NTFS格式苹果电脑不能修改 paragon ntfs for mac激活码

对于同时使用Windows和Mac操作系统的用户而言&#xff0c;选择一个既能确保数据互通又能满足大容量存储需求的移动硬盘格式尤为重要。下面我们来看看啥移动硬盘格式能更好兼容Windows和Mac系统&#xff0c;NTFS格式苹果电脑不能修改的相关内容。 一、啥移动硬盘格式能更好兼容…

若依微服务项目09 - swagger如何不显示某个模块的接口文档

在若依微服务项目中&#xff0c;如果不想暴露某个模块的swagger的接口文档&#xff0c;需要怎么做&#xff1f; 本文以ruoyi-gen模块进行举例说明。 默认情况下&#xff0c;可以看到这里包含了ruoyi-gen模块&#xff0c;我们要做的是&#xff0c;要将ruoyi-gen进行隐藏。 最终的…

VMware连接XShell保姆教程

打开虚拟机后进入终端在终端中 1.配置静态IP 在终端中输入 ifconfig回车&#xff0c; 注意这里需要记住这个IP每个电脑的都不一样 在输入ip addr 2.接着输入cd /etc/sysconfig/network-scripts/进入配置网络文件夹 3.通过Vim编辑器编辑内容 vim ifconfig-ens33 进入界面…

Stm32超声波测距实验

一.任务需求 1. 采用stm32F103和HC-SR04超声波模块&#xff0c; 使用标准库或HAL库 定时器中断&#xff0c;完成1或2路的超声波障碍物测距功能。 2. 当前智能汽车上一般配置有12路超声波雷达&#xff0c;这些专用超声波雷达内置了MCU&#xff0c;直接输出数字化的测距结果&am…

三阶段复习

6.21 静态库与动态库 库有两种&#xff1a;静态库&#xff08;.a、.lib&#xff09;和动态库&#xff08;.so、.dll&#xff09;。所谓静态、动态是指链接。静态库在链接期把整个库文件都拷贝到可执行文件中&#xff0c;而动态库在链接期只是把索引文件拷贝到可执行文件中&…

【漏洞复现】畅捷通T+ keyEdit.aspx SQL漏洞

0x01 产品简介 畅捷通 T 是一款灵动&#xff0c;智慧&#xff0c;时尚的基于互联网时代开发的管理软件&#xff0c;主要针对中小型工贸与商贸企业&#xff0c;尤其适合有异地多组织机构(多工厂&#xff0c;多仓库&#xff0c;多办事处&#xff0c;多经销商)的企业&#xff0c;…

预制直埋聚氨酯保温管

&#x1f600;宝子们&#xff0c;今天来给大家介绍一下预制聚氨酯直埋保温管&#x1f389;&#xff01; 它可是个好东西&#x1f44d;&#xff0c;具有超强的保温性能&#x1f9ca;&#xff0c;能够有效保持管道内的温度&#x1f60e;。 而且它还很耐用&#x1f4aa;&#xff0…

【华为HCIA数通网络工程师真题-构建互联互通的IP网络】

文章目录 一、选择题 一、选择题 1、缺省情况下&#xff0c;广播网络上OSPF协议RouterDeadInterval是&#xff1f; 40s &#xff08;ospf 的 RouterDeadInterval 为四倍 hello time 时间&#xff0c;hello time 周期默认为10s&#xff0c;所以 RouterDeadInterval 默认为 40s …

JimuReport 积木报表 v1.7.6 版本发布,免费的低代码报表

项目介绍 一款免费的数据可视化报表工具&#xff0c;含报表和大屏设计&#xff0c;像搭建积木一样在线设计报表&#xff01;功能涵盖&#xff0c;数据报表、打印设计、图表报表、大屏设计等&#xff01; Web 版报表设计器&#xff0c;类似于excel操作风格&#xff0c;通过拖拽完…

Linux安装Maven(详细教程手把手教会)

安装Maven 1.下载压缩包 官网下载&#xff1a;https://dlcdn.apache.org/maven/maven-3/3.8.8/binaries/apache-maven-3.8.8-bin.tar.gz 2.上传到Linux服务器的opt目录下 3.执行命令解压 tar -zxvf apache-maven-3.8.8-bin.tar.gz4.添加环境变量 vim /etc/profile5.在最后…

通过 cloudflare 白嫖个人 docker 镜像加速服务

不知为何&#xff0c;现在大多数的 docker hub 镜像加速站都停止服务&#xff0c;而官方站点又因某些原因访问不到或延迟很高。所以&#xff0c;今天来记录一种通过 CloudFlare 搭建一个自己的镜像加速服务。 0、必看&#xff01;&#xff01;&#xff01; 注意&#xff1a; 此…

JavaSE基础总结复习之面向对象の知识总结

目录 Java语言的基础特点 面向对象 类和对象 类 类的构造 一&#xff0c;发现类 二&#xff0c;发现类的共有属性&#xff08;成员变量&#xff09; 三&#xff0c;定义类的成员方法&#xff08;行为&#xff0c;动词&#xff09; 四&#xff0c;使用类创建对象 对象…

194.回溯算法:组合总和||(力扣)

代码解决 class Solution { public:vector<int> res; // 当前组合的临时存储vector<vector<int>> result; // 存储所有符合条件的组合// 回溯函数void backtracing(vector<int>& candidates, int target, int flag, int index, vector<bool>…

Azure虚拟机

Azure创建虚拟机 一、创建步骤(1)登录到Azure portal(2)启动新实例(3)填写必要信息选择系统镜像(4)选择实例类型(5)配置管理员帐户和入站端口规则(6) 磁盘&#xff1a;保持默认(7) 网络&#xff1a;保持默认(8) 管理&#xff1a;保持默认(9) Monitoring&#xff1a;Boot diagno…

Django之云存储(二)

一、Django使用云存储 建立项目 django-admin startproject project_demo创建子应用 python manage.py startapp app_name修改配置文件,设置模板视图路径 settings.py TEMPLATES = [{BACKEND: django.template.backends.django.DjangoTemplates,DIRS: [os.path.join(BASE_DIR,…

nn.Embedding 根据索引生成的向量有权重吗

import torch import torch.nn as nn 假设有一个大小为 10x3 的 Embedding 层&#xff0c;其中有 10 个单词&#xff0c;每个单词用一个长度为 3 的向量表示 num_words 10 embedding_dim 3 创建 Embedding 层 embedding_layer nn.Embedding(num_words, embedding_dim) p…