基于PSO粒子群优化的CNN-GRU的时间序列回归预测matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

4.1 卷积神经网络(CNN)

4.2 CNN-GRU模型架构

4.3 CNN-GRU结合PSO的时间序列预测

5.算法完整程序工程


1.算法运行效果图预览

(完整程序运行后无水印)

2.算法运行软件版本

matlab2022a

3.部分核心程序

....................................................................
for i=1:Iter
    i
    for j=1:Npeop
        rng(i+j)
        if func_obj(x1(j,:))<pbest1(j)
           p1(j,:)   = x1(j,:);%变量
           pbest1(j) = func_obj(x1(j,:));
        end
        if pbest1(j)<gbest1
           g1     = p1(j,:);%变量
           gbest1 = pbest1(j);
        end
        
        v1(j,:) = 0.8*v1(j,:)+c1*rand*(p1(j,:)-x1(j,:))+c2*rand*(g1-x1(j,:));
        x1(j,:) = x1(j,:)+v1(j,:); 
         
        for k=1:dims
            if x1(j,k) >= tmps(2,k)
               x1(j,k) = tmps(2,k);
            end
            if x1(j,k) <= tmps(1,k)
               x1(j,k) = tmps(1,k);
            end
        end

        for k=1:dims
            if v1(j,k) >= tmps(2,k)/2
               v1(j,k) =  tmps(2,k)/2;
            end
            if v1(j,k) <= tmps(1,k)/2
               v1(j,k) =  tmps(1,k)/2;
            end
        end

    end
    gb1(i)=gbest1 ;
end
 
LR             = g1(1);
 
numHiddenUnits1 = floor(g1(2))+1;% 定义隐藏层中LSTM单元的数量
............................................................................
figure
subplot(211);
plot(1: Num1, Tat_train,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(1: Num1, T_sim1,'g',...
    'LineWidth',2,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);

legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
grid on

subplot(212);
plot(1: Num1, Tat_train-T_sim1','-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
 
xlabel('预测样本')
ylabel('预测误差')
grid on
ylim([-50,50]);



figure
subplot(211);
plot(1: Num2, Tat_test,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(1: Num2, T_sim2,'g',...
    'LineWidth',2,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
legend('真实值', '预测值')
xlabel('测试样本')
ylabel('测试结果')
grid on

subplot(212);
plot(1: Num2, Tat_test-T_sim2','-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
 
xlabel('预测样本')
ylabel('预测误差')
grid on
ylim([-50,50]);


save R2.mat Num2 Tat_test T_sim2 gb1 Accuracy
152

4.算法理论概述

        基于粒子群优化(Particle Swarm Optimization, PSO)的的CNN-GRU(卷积神经网络-门控循环单元)时间序列回归预测模型,是融合了遗传算法的优化能力和深度学习模型的表达力的一种高级预测框架。该模型通过结合CNN在特征提取上的优势和GRU在处理序列数据中的高效记忆机制,实现了对时间序列数据的深入理解和未来值的精确预测。同时,利用遗传算法对模型超参数进行优化,能够进一步提升模型的预测性能。

4.1 卷积神经网络(CNN)

       CNN以其在图像识别领域的卓越表现而闻名,但其在时间序列分析中也显示出了强大的潜力。CNN通过局部连接和权值共享减少参数数量,利用卷积层捕获输入数据的空间特征。

4.2 CNN-GRU模型架构

GRU作为LSTM的简化版,同样用于捕获序列中的长期依赖,但具有更少的门控机制.

4.3 CNN-GRU结合PSO的时间序列预测

       在时间序列预测任务中,首先使用CNN对输入序列进行特征提取,然后将提取到的特征作为GRU的输入,进一步捕捉序列中的时序依赖关系。整个网络的参数(包括CNN的卷积核权重、GRU的门控参数等)构成了PSO算法的搜索空间。

1.结合PSO的过程:初始化一组粒子,每个粒子代表一组CNN-LSTM模型的参数。
2.对于每个粒子,构建相应的CNN-GRU模型并训练,评估其在验证集上的预测性能(如均方误差MSE)作为适应度函数。
3.根据PSO算法更新粒子的位置和速度,不断寻找更优的模型参数配置。
4.迭代此过程直至满足停止条件(如达到最大迭代次数或找到足够好的解)。

5.算法完整程序工程

OOOOO

OOO

O

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/731664.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

20240622 每日AI必读资讯

&#x1f916;力压GPT-4o&#xff01;新王Claude 3.5 Sonnet来了&#xff0c;直接免费可用 - 新模型在推理、知识和编码能力评估方面超越了以前的版本和竞争对手GPT 4o模型&#xff0c;同时其运行速度是Claude 3 Opus的两倍。 - 该模型可在http://Claude.ai和Claude iOS应用上…

牛客练习题打卡--redis

A list保证数据线性有序且元素可重复&#xff0c;它支持lpush、blpush、rpop、brpop等操作&#xff0c;可以当作简单的消息队列使用&#xff0c;一个list最多可以存储2^32-1个元素; redis中set是无序且不重复的; zset可以按照分数进行排序 &#xff0c;是有序不重复的; Redi…

5步快速了解电商渠道数字化管理||电商API数据采集|数据分析

随着电商平台的飞速发展&#xff0c;电商渠道占据品牌经销渠道的比重越来越大&#xff0c;以前只有线下经销渠道的时代已经结束&#xff0c;但是随着渠道的拓展&#xff0c;其中出现了很多问题&#xff0c;如线上渠道或者店铺数量更大、扰乱秩序成本更低、日常上线和下线变动价…

『FPGA通信接口』LVDS接口(4)LVDS接收端设计

文章目录 1.LVDS接收端概述2逻辑框图3.xapp855训练代码解读4.接收端发送端联调5.传送门 1.LVDS接收端概述 接收端的传输模型各个属性应该与LVDS发送端各属性一致&#xff0c;例如&#xff0c;如果用于接收CMOS图像传感器的图像数据&#xff0c;则接收端程序的串化因子、通道个…

ardupilot开发 --- Jetson Orin Nano 后篇

我拼命加速&#xff0c;但贫穷始终快我一步 0~1920. visp-d455&#xff1a;基于IBVS的Pixhawk无人机视觉伺服20.1 基础关于连接、通讯、UDP forward服务&#xff1a;一些相关的、有用的例程Linux C程序的gdb断点调试搭建仿真解决【testPixhawkDroneTakeoff.cpp例程能解锁但起飞…

unity-调用讯飞星火语音唤醒-新版windowsSDK

调用讯飞星火语音唤醒-新版windowsSDK 先贴一张在unity中 wins系统下成功调用新版的讯飞windowsSDK的运行截图 为什么要用讯飞的语音唤醒&#xff1f; 项目中需要在unity和win系统下进行语音唤醒开启语音对话&#xff0c;而语音唤醒比较成熟的方案大多都是在linux系统下的&…

vue实现的商品列表网页

一、商品列表效果如下 二、代码&#xff1b; vue实现的商品列表网页 &#xff0c; 图片在vue项目的Public文件夹里的 imgs中 <template><div class"common-layout"><!-- el-container:外层容器。 当子元素中包含 <el-header> 或 <el-foo…

【性能优化】表分桶实践最佳案例

分桶背景 随着企业的数据不断增长&#xff0c;数据的分布和访问模式变得越来越复杂。我们前面介绍了如何通过对表进行分区来提高查询效率&#xff0c;但对于某些特定的查询模式&#xff0c;特别是需要频繁地进行数据联接查或取样的场景&#xff0c;仍然可能面临性能瓶颈。此外…

Vitis Accelerated Libraries 学习笔记--OpenCV 运行测试

目录 1. 简介 2. 实例测试 2.1 实例介绍 2.1 创建工程 3 常见错误 3.1 核心共享库报错 4. 总结 1. 简介 在《Vitis Accelerated Libraries 学习笔记--OpenCV 安装指南-CSDN博客》一文中&#xff0c;我详尽地介绍了 OpenCV 的安装过程。尽管 Vitis Vision 库的实现本身并…

泽众云真机-平台即将升级支持华为机型HarmonyOS NEXT系统

具小编了解&#xff0c;泽众云真机即将升级支持华为机型HarmonyOS NEXT系统。有些人可能对HarmonyOS NEXT系统了解不多。 之前我们有个银行项目&#xff0c;客户要求测试华为HarmonyOS NEXT系统环境&#xff0c;当时我们云真机尚未有该系统的机型&#xff0c;然后技术人员向华为…

企业智慧办公管理平台

摘要 在之前的疫情中&#xff0c;大多数企业都受到了较大的冲击&#xff0c;然而一些公司却因为工作的特殊性可以居家远程办公&#xff0c;不过这些企业在管理员工的过程中却遇到了较大的困难&#xff0c;这是因为这些企业的管理系统根本大多都无法管理员工的工作项目&#xf…

【面试干货】 Java 中的 HashSet 底层实现

【面试干货】 Java 中的 HashSet 底层实现 1、HashSet 的底层实现2、 HashSet 的特点3、 总结 &#x1f496;The Begin&#x1f496;点点关注&#xff0c;收藏不迷路&#x1f496; HashSet 是 Java 集合框架中的一个重要成员&#xff0c;它提供了不存储重复元素的集合。但是&am…

【AI作曲】毁掉音乐?早该来了!一个网易音乐人对于 AI 大模型音乐创作的思辨

引言&#xff1a;AI在创造还是毁掉音乐&#xff1f; 正如当初 midjourney 和 StableDiffusion 在绘画圈掀起的风波一样&#xff0c;suno 和 各大音乐大模型的来临&#xff0c;其实早该来了。 AI 在毁掉绘画&#xff1f;或者毁掉音乐&#xff1f; 没错&#xff0c;但也错了。…

SuperImage高级免费版本下载,简单纯粹没有广告!

SuperImage是一款功能强大、易于使用的基于神经网络的图像放大工具&#xff0c;适用于各种场景&#xff0c;如修复老照片、增大图片尺寸、智能修复破损等。基于AI技术&#xff0c;使用MNN深度学习框架和Real-ESRGAN算法&#xff0c;能够提供高质量的图像处理效果。通过设备的GP…

嵌入式Linux驱动开研发流程详细解析

大家好,今天主要给大家分享一下,嵌入式linux中重要的内容详解。 一、驱动概念 驱动与底层硬件直接打交道,充当了硬件与应用软件中间的桥梁。 具体任务 读写设备寄存器(实现控制的方式) 完成设备的轮询、中断处理、DMA通信(CPU与外设通信的方式) 进行物理内存向虚拟内存…

综合评价 | 基于因子分析和聚类分析的节点重要度综合评价(Matlab)

目录 效果一览基本介绍程序设计参考资料 效果一览 基本介绍 综合评价 | 基于因子分析和聚类分析的节点重要度综合评价&#xff08;Matlab&#xff09; 程序设计 完整程序和数据获取方式&#xff1a;私信博主回复基于因子分析和聚类分析的节点重要度综合评价&#xff08;Matlab…

Apache Arrow 和数据的未来:开放标准推动人工智能发展

Apache Arrow 是一种开源列式内存格式&#xff0c;适用于平面数据和分层数据。在现代数据湖中&#xff0c;开放数据格式&#xff08;如 Apache Arrow&#xff09;位于现代对象存储的存储层中。这些格式成为对象存储中的对象。 在最新版本中&#xff0c;Apache Arrow 宣布计划从…

碳钢酸洗线送酸槽蒸汽冷凝水PH计测量装置改进方法

碳钢酸洗线送酸槽蒸汽冷凝水PH计测量装置改进方法 一、项目提出前状况 1)立项背景 轧钢退火酸洗生产线的酸洗过程需要使用大量的硫酸、盐酸、硝酸、氢氟酸等酸液对钢带的表面进行清洗,酸洗过后产生较多的酸洗废水,酸洗废水需要经过处理达到污水排放标准后才能排放。其中酸…

蓝桥杯 经典算法题 实现归并排序

题目&#xff1a; 题解&#xff1a; 不断地将数组不断向下平均分为两部分&#xff0c;直到每个子数组中元素数量为1&#xff0c;这样就可以将相邻两个数组长度为1的数组看作是单调数组合并为一个大的单调数组&#xff0c;如此不断向上合并出最终的单调数组。 #include <bi…

百度地图3d区域掩膜,最常见通用的大屏地图展现形式

需求及效果 原本项目使用的是百度地图3.0,也就是2d版本的那个地图,客户不满意觉得不够好看,让把地图改成3d的,但是我们因为另外的系统用的都是百度地图,为了保持统一只能用百度地图做 经过3天的努力,最后我终于把这个效果实现了,效果如下: 如何引用GL版本 为了实现…