目录
描述
输入描述:
输出描述:
参考代码
描述
请根据题目中给出的双口RAM代码和接口描述,实现异步FIFO,要求FIFO位宽和深度参数化可配置。
电路的接口如下图所示。
双口RAM端口说明:
端口名 | I/O | 描述 |
wclk | input | 写数据时钟 |
wenc | input | 写使能 |
waddr | input | 写地址 |
wdata | input | 输入数据 |
rclk | input | 读数据时钟 |
renc | input | 读使能 |
raddr | input | 读地址 |
rdata | output | 输出数据 |
同步FIFO端口说明:
端口名 | I/O | 描述 |
wclk | input | 写时钟 |
rclk | input | 读时钟 |
wrstn | input | 写时钟域异步复位 |
rrstn | input | 读时钟域异步复位 |
winc | input | 写使能 |
rinc | input | 读使能 |
wdata | input | 写数据 |
wfull | output | 写满信号 |
rempty | output | 读空信号 |
rdata | output | 读数据 |
双口RAM代码如下,可在本题答案中添加并例化此代码。
module dual_port_RAM #(parameter DEPTH = 16,
parameter WIDTH = 8)(
input wclk
,input wenc
,input [$clog2(DEPTH)-1:0] waddr //深度对2取对数,得到地址的位宽。
,input [WIDTH-1:0] wdata //数据写入
,input rclk
,input renc
,input [$clog2(DEPTH)-1:0] raddr //深度对2取对数,得到地址的位宽。
,output reg [WIDTH-1:0] rdata //数据输出
);
reg [WIDTH-1:0] RAM_MEM [0:DEPTH-1];
always @(posedge wclk) begin
if(wenc)
RAM_MEM[waddr] <= wdata;
end
always @(posedge rclk) begin
if(renc)
rdata <= RAM_MEM[raddr];
end
endmodule
输入描述:
input wclk ,
input rclk ,
input wrstn ,
input rrstn ,
input winc ,
input rinc ,
input [WIDTH-1:0] wdata
输出描述:
output wire wfull ,
output wire rempty ,
output wire [WIDTH-1:0] rdata
参考代码
`timescale 1ns/1ns
/***************************************RAM*****************************************/
module dual_port_RAM #(parameter DEPTH = 16,
parameter WIDTH = 8)(
input wclk
,input wenc
,input [$clog2(DEPTH)-1:0] waddr //深度对2取对数,得到地址的位宽。
,input [WIDTH-1:0] wdata //数据写入
,input rclk
,input renc
,input [$clog2(DEPTH)-1:0] raddr //深度对2取对数,得到地址的位宽。
,output reg [WIDTH-1:0] rdata //数据输出
);
reg [WIDTH-1:0] RAM_MEM [0:DEPTH-1];
always @(posedge wclk) begin
if(wenc)
RAM_MEM[waddr] <= wdata;
end
always @(posedge rclk) begin
if(renc)
rdata <= RAM_MEM[raddr];
end
endmodule
/***************************************AFIFO*****************************************/
module asyn_fifo#(
parameter WIDTH = 8,
parameter DEPTH = 16
)(
input wclk ,
input rclk ,
input wrstn ,
input rrstn ,
input winc ,
input rinc ,
input [WIDTH-1:0] wdata ,
output wire wfull ,
output wire rempty ,
output wire [WIDTH-1:0] rdata
);
parameter ADDR_WIDTH = $clog2(DEPTH);
/**********************addr bin gen*************************/
reg [ADDR_WIDTH:0] waddr_bin;
reg [ADDR_WIDTH:0] raddr_bin;
always @(posedge wclk or negedge wrstn) begin
if(~wrstn) begin
waddr_bin <= 'd0;
end
else if(!wfull && winc)begin
waddr_bin <= waddr_bin + 1'd1;
end
end
always @(posedge rclk or negedge rrstn) begin
if(~rrstn) begin
raddr_bin <= 'd0;
end
else if(!rempty && rinc)begin
raddr_bin <= raddr_bin + 1'd1;
end
end
/**********************addr gray gen*************************/
wire [ADDR_WIDTH:0] waddr_gray;
wire [ADDR_WIDTH:0] raddr_gray;
reg [ADDR_WIDTH:0] wptr;
reg [ADDR_WIDTH:0] rptr;
assign waddr_gray = waddr_bin ^ (waddr_bin>>1);
assign raddr_gray = raddr_bin ^ (raddr_bin>>1);
always @(posedge wclk or negedge wrstn) begin
if(~wrstn) begin
wptr <= 'd0;
end
else begin
wptr <= waddr_gray;
end
end
always @(posedge rclk or negedge rrstn) begin
if(~rrstn) begin
rptr <= 'd0;
end
else begin
rptr <= raddr_gray;
end
end
/**********************syn addr gray*************************/
reg [ADDR_WIDTH:0] wptr_buff;
reg [ADDR_WIDTH:0] wptr_syn;
reg [ADDR_WIDTH:0] rptr_buff;
reg [ADDR_WIDTH:0] rptr_syn;
always @(posedge wclk or negedge wrstn) begin
if(~wrstn) begin
rptr_buff <= 'd0;
rptr_syn <= 'd0;
end
else begin
rptr_buff <= rptr;
rptr_syn <= rptr_buff;
end
end
always @(posedge rclk or negedge rrstn) begin
if(~rrstn) begin
wptr_buff <= 'd0;
wptr_syn <= 'd0;
end
else begin
wptr_buff <= wptr;
wptr_syn <= wptr_buff;
end
end
/**********************full empty gen*************************/
assign wfull = (wptr == {~rptr_syn[ADDR_WIDTH:ADDR_WIDTH-1],rptr_syn[ADDR_WIDTH-2:0]});
assign rempty = (rptr == wptr_syn);
/**********************RAM*************************/
wire wen ;
wire ren ;
wire wren;//high write
wire [ADDR_WIDTH-1:0] waddr;
wire [ADDR_WIDTH-1:0] raddr;
assign wen = winc & !wfull;
assign ren = rinc & !rempty;
assign waddr = waddr_bin[ADDR_WIDTH-1:0];
assign raddr = raddr_bin[ADDR_WIDTH-1:0];
dual_port_RAM #(.DEPTH(DEPTH),
.WIDTH(WIDTH)
)dual_port_RAM(
.wclk (wclk),
.wenc (wen),
.waddr(waddr[ADDR_WIDTH-1:0]), //深度对2取对数,得到地址的位宽。
.wdata(wdata), //数据写入
.rclk (rclk),
.renc (ren),
.raddr(raddr[ADDR_WIDTH-1:0]), //深度对2取对数,得到地址的位宽。
.rdata(rdata) //数据输出
);
endmodule