【Rust】Rust学习 第十一章编写自动化测试

Rust 是一个相当注重正确性的编程语言,不过正确性是一个难以证明的复杂主题。Rust 的类型系统在此问题上下了很大的功夫,不过它不可能捕获所有种类的错误。为此,Rust 也在语言本身包含了编写软件测试的支持。

编写一个叫做 add_two 的将传递给它的值加二的函数。它的签名有一个整型参数并返回一个整型值。当实现和编译这个函数时,Rust 会进行所有目前我们已经见过的类型检查和借用检查,例如,这些检查会确保我们不会传递 String 或无效的引用给这个函数。Rust 所 不能 检查的是这个函数是否会准确的完成我们期望的工作:返回参数加二后的值,而不是比如说参数加 10 或减 50 的值!这也就是测试出场的地方。

可以编写测试断言,比如说,当传递 3 给 add_two 函数时,返回值是 5。无论何时对代码进行修改,都可以运行测试来确保任何现存的正确行为没有被改变。

11.1 编写测试

如何编写测试

Rust 中的测试函数是用来验证非测试代码是否按照期望的方式运行的。测试函数体通常执行如下三种操作:

  1. 设置任何所需的数据或状态
  2. 运行需要测试的代码
  3. 断言其结果是我们所期望的

测试函数剖析

作为最简单例子,Rust 中的测试就是一个带有 test 属性注解的函数。属性(attribute)是关于 Rust 代码片段的元数据;第五章中结构体中用到的 derive 属性就是一个例子。为了将一个函数变成测试函数,需要在 fn 行之前加上 #[test]当使用 cargo test 命令运行测试时,Rust 会构建一个测试执行程序用来调用标记了 test 属性的函数,并报告每一个测试是通过还是失败。

创建一个新的库项目 adder

$ cargo new adder --lib
     Created library `adder` project
$ cd adder

新建后的默认代码是,判断加法

pub fn add(left: usize, right: usize) -> usize {
    left + right
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn it_works() {
        let result = add(2, 2);
        assert_eq!(result, 4);
    }
}

使用

cargo test

结果

Cargo 编译并运行了测试。在 CompilingFinished 和 Running 这几行之后,可以看到 running 1 test 这一行。下一行显示了生成的测试函数的名称,它是 it_works,以及测试的运行结果,ok。接着可以看到全体测试运行结果的摘要:test result: ok. 意味着所有测试都通过了。1 passed; 0 failed 表示通过或失败的测试数量。

因为之前我们并没有将任何测试标记为忽略,所以摘要中会显示 0 ignored。我们也没有过滤需要运行的测试,所以摘要中会显示0 filtered out

0 measured 统计是针对性能测试的。性能测试(benchmark tests)在编写本书时,仍只能用于 Rust 开发版(nightly Rust)。

测试输出中的以 Doc-tests adder 开头的这一部分是所有文档测试的结果。我们现在并没有任何文档测试,不过 Rust 会编译任何在 API 文档中的代码示例。这个功能帮助我们使文档和代码保持同步!

改变测试的名称并看看这如何改变测试的输出。修改测名称

pub fn add(left: usize, right: usize) -> usize {
    left + right
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    // 这里修改了测试名称
    fn exploration() {
        let result = add(2, 2);
        assert_eq!(result, 4);
    }
}

结果

让我们增加另一个测试,不过这一次是一个会失败的测试!当测试函数中出现 panic 时测试就失败了。每一个测试都在一个新线程中运行,当主线程发现测试线程异常了,就将对应测试标记为失败。第九章讲到了最简单的造成 panic 的方法:调用 panic! 宏。

pub fn add(left: usize, right: usize) -> usize {
    left + right
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn exploration() {
        let result = add(2, 2);
        assert_eq!(result, 4);
    }

    // 新增错误测试
    #[test]
    fn another() {
        panic!("Make this test fail");
    }


}

结果

再次 cargo test 运行测试。它表明 exploration 测试通过了而 another 失败了

test tests::another 这一行是 FAILED 而不是 ok 了。在单独测试结果和摘要之间多了两个新的部分:第一个部分显示了测试失败的详细原因。在这个例子中,another 因为在src/lib.rs 的第 10 行 panicked at 'Make this test fail' 而失败。下一部分列出了所有失败的测试,这在有很多测试和很多失败测试的详细输出时很有帮助。

最后是摘要行:总体上讲,测试结果是 FAILED。有一个测试通过和一个测试失败。

使用assert!宏来检查结果

assert! 宏由标准库提供,在希望确保测试中一些条件为 true 时非常有用。需要向 assert! 宏提供一个求值为布尔值的参数。如果值是 trueassert! 什么也不做,同时测试会通过。如果值为 falseassert! 调用 panic! 宏,这会导致测试失败。assert! 宏帮助我们检查代码是否以期望的方式运行。


// 结构体
struct Rectangle {
    width: u32,
    height: u32,
}

// 结构体实现了can_hold方法
impl Rectangle {
    fn can_hold(&self, other: &Rectangle) -> bool {
        self.width > other.width && self.height > other.height
    }
}

// 测试
#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn larger_can_hold_smaller() {
        let larger = Rectangle { width: 8, height: 7 };
        let smaller = Rectangle { width: 5, height: 1 };

        assert!(larger.can_hold(&smaller));
    }
}

注意在 tests 模块中新增加了一行:use super::*;

我们将测试命名为 larger_can_hold_smaller,并创建所需的两个 Rectangle 实例。接着调用 assert! 宏并传递 larger.can_hold(&smaller) 调用的结果作为参数。这个表达式预期会返回 true,所以测试应该通过。

结果

再来增加另一个测试,这一回断言一个更小的矩形不能放下一个更大的矩形:

fn main() {}
#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn larger_can_hold_smaller() {
        // --snip--
    }

    #[test]
    fn smaller_cannot_hold_larger() {
        let larger = Rectangle { width: 8, height: 7 };
        let smaller = Rectangle { width: 5, height: 1 };

        assert!(!smaller.can_hold(&larger));
    }
}

 也通过了

如果引入一个 bug 的话测试结果会发生什么。将 can_hold 方法中比较长度时本应使用大于号的地方改成小于号:

impl Rectangle {
    fn can_hold(&self, other: &Rectangle) -> bool {
        self.width < other.width && self.height > other.height
    }
}

结果

我们的测试捕获了 bug!因为 larger.length 是 8 而 smaller.length 是 5,can_hold 中的长度比较现在因为 8 不小于 5 而返回 false

使用assert_eq!和assert_ne!宏来测试相等

测试功能的一个常用方法是将需要测试代码的值与期望值做比较,并检查是否相等。可以通过向 assert! 宏传递一个使用 == 运算符的表达式来做到。不过这个操作实在是太常见了,以至于标准库提供了一对宏来更方便的处理这些操作 —— assert_eq! 和 assert_ne!。这两个宏分别比较两个值是相等还是不相等。当断言失败时他们也会打印出这两个值具体是什么,以便于观察测试 为什么 失败,而 assert! 只会打印出它从 == 表达式中得到了 false 值,而不是导致 false 的两个值。

pub fn add_two(a: i32) -> i32 {
    a + 2
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn it_adds_two() {
        assert_eq!(4, add_two(2));
    }
}

传递给 assert_eq! 宏的第一个参数 4 ,等于调用 add_two(2) 的结果。测试中的这一行 test tests::it_adds_two ... ok 中 ok 表明测试通过!

在代码中引入一个 bug 来看看使用 assert_eq! 的测试失败是什么样的。

pub fn add_two(a: i32) -> i32 {
    a + 3      // 这里修改了
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn it_adds_two() {
        assert_eq!(4, add_two(2));
    }
}

结果

测试捕获到了 bug!it_adds_two 测试失败,显示信息 assertion failed: `(left == right)` 并表明 left 是 4 而 right 是 5。这个信息有助于我们开始调试:它说 assert_eq! 的 left 参数是 4,而 right 参数,也就是 add_two(2) 的结果,是 5

需要注意的是,在一些语言和测试框架中,断言两个值相等的函数的参数叫做 expected 和 actual,而且指定参数的顺序是很关键的。然而在 Rust 中,他们则叫做 left 和 right,同时指定期望的值和被测试代码产生的值的顺序并不重要。这个测试中的断言也可以写成 assert_eq!(add_two(2), 4),这时失败信息会变成 assertion failed: `(left == right)` 其中 left 是 5 而 right 是 4

assert_ne! 宏在传递给它的两个值不相等时通过,而在相等时失败。

自定义失败信息

也可以向 assert!assert_eq! 和 assert_ne! 宏传递一个可选的失败信息参数,可以在测试失败时将自定义失败信息一同打印出来。任何在 assert! 的一个必需参数和 assert_eq! 和 assert_ne! 的两个必需参数之后指定的参数都会传递给 format! 宏,所以可以传递一个包含 {} 占位符的格式字符串和需要放入占位符的值。自定义信息有助于记录断言的意义;当测试失败时就能更好的理解代码出了什么问题。

例如,比如说有一个根据人名进行问候的函数,而我们希望测试将传递给函数的人名显示在输出中:

 

pub fn greeting(name: &str) -> String {
    format!("Hello {}!", name)
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn greeting_contains_name() {
        let result = greeting("Carol");
        assert!(result.contains("Carol"));
    }
}

结果

这个程序的需求还没有被确定,因此问候文本开头的 Hello 文本很可能会改变。然而我们并不想在需求改变时不得不更新测试,所以相比检查 greeting 函数返回的确切值,我们将仅仅断言输出的文本中包含输入参数。

让我们通过将 greeting 改为不包含 name 来在代码中引入一个 bug 来测试失败时是怎样的:

pub fn greeting(name: &str) -> String {
    String::from("Hello!")
}

结果

结果仅仅告诉了我们断言失败了和失败的行号。一个更有用的失败信息应该打印出 greeting 函数的值。让我们为测试函数增加一个自定义失败信息参数:带占位符的格式字符串,以及 greeting 函数的值:

#[test]
fn greeting_contains_name() {
    let result = greeting("Carol");
    assert!(
        result.contains("Carol"),
        "Greeting did not contain name, value was `{}`", result
    );
}

结果

使用should_panic检查panic

除了检查代码是否返回期望的正确的值之外,检查代码是否按照期望处理错误也是很重要的。

可以通过对函数增加另一个属性 should_panic 来实现这些。这个属性在函数中的代码 panic 时会通过,而在其中的代码没有 panic 时失败。

pub struct Guess {
    value: i32,
}

impl Guess {
    pub fn new(value: i32) -> Guess {
        if value < 1 || value > 100 {
            panic!("Guess value must be between 1 and 100, got {}.", value);
        }

        Guess {
            value
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    #[should_panic]
    fn greater_than_100() {
        Guess::new(200);
    }
}

结果

看起来不错!现在在代码中引入 bug,移除 new 函数在值大于 100 时会 panic 的条件:

fn main() {}
pub struct Guess {
    value: i32,
}

// --snip--

impl Guess {
    pub fn new(value: i32) -> Guess {
        if value < 1  {
            panic!("Guess value must be between 1 and 100, got {}.", value);
        }

        Guess {
            value
        }
    }
}

结果

这回并没有得到非常有用的信息,不过一旦我们观察测试函数,会发现它标注了 #[should_panic]。这个错误意味着代码中测试函数 Guess::new(200) 并没有产生 panic。

将Result<T,E>用于测试

也可以使用 Result<T, E> 编写测试!这里是第一个例子采用了 Result:


#![allow(unused_variables)]
fn main() {
#[cfg(test)]
mod tests {
    #[test]
    fn it_works() -> Result<(), String> {
        if 2 + 2 == 4 {
            Ok(())
        } else {
            Err(String::from("two plus two does not equal four"))
        }
    }
}
}

现在 it_works 函数的返回值类型为 Result<(), String>。在函数体中,不同于调用 assert_eq! 宏,而是在测试通过时返回 Ok(()),在测试失败时返回带有 String 的 Err

这样编写测试来返回 Result<T, E> 就可以在函数体中使用问号运算符,如此可以方便的编写任何运算符会返回 Err 成员的测试。

不能对这些使用 Result<T, E> 的测试使用 #[should_panic] 注解。相反应该在测试失败时直接返回 Err 值。

11.2 运行测试

11.3 测试的组织结构

用到再学

参考: 测试 - Rust 程序设计语言 简体中文版 (bootcss.com)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/73113.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Jsoup爬取简单信息

1. 豆瓣图书最受关注 1.1 创建SpringBoot项目或者Maven项目 1.2 引入jsoup <dependency><!-- jsoup HTML parser library https://jsoup.org/ --><groupId>org.jsoup</groupId><artifactId>jsoup</artifactId><version>1.15.3<…

MySQL_约束、多表关系

约束 概念&#xff1a;就是用来作用表中字段的规则&#xff0c;用于限制存储在表中的数据。 目的&#xff1a;保证数据库中数据的正确性&#xff0c;有效性和完整性。 约束演示 #定义一个学生表&#xff0c;表中要求如下&#xff1a; #sn 表示学生学号&#xff0c;要求使用 …

开源可商业运营的ChatGpt网页源码v1.2.2

&#x1f916; 主要功能 后台管理系统,可对用户,Token,商品,卡密等进行管理 精心设计的 UI&#xff0c;响应式设计 极快的首屏加载速度&#xff08;~100kb&#xff09; 支持Midjourney绘画和DALLE模型绘画,GPT4等应用 海量的内置 prompt 列表&#xff0c;来自中文和英文 一键导…

【C++】vector容器

0.前言 1.vector构造函数 #include <iostream> using namespace std; #include <vector>void printVector(vector<int>& v) //此处&代表 引用 &#xff1b;若取地址&#xff0c;则是 数据类型* 变量名 {for (vector<int>::iterator it v.begi…

Apache-Maven

安装Maven 解压apache-maven到目录下 Maven目录如下 bin&#xff1a;目录中存放的是可执行文件&#xff0c;JAVA项目中的编译执行打包都要使用bin. conf:存放的是Maven的配置文件&#xff0c;本地配置、私服配置都需要在conf下的settings.xml进行配置。 lib下存放的是Maven所…

C++学习| MFC简单入门

前言&#xff1a;因为接手了CMFC的程序&#xff0c;所以需要对MFC编程方面有所了解。 C之MFC简单入门 MFC相关的概念MFCWIN32QT MFC项目基本操作MFC项目创建MFC项目文件解读界面和代码数据交互——加法器 MFC相关的概念 MFC MFC&#xff08;Microsoft Foundation Classes微软…

湖仓一体:国产基础软件的创新突破与弯道超车

在这个市场变化和技术演进的时期&#xff0c;传统的国内外巨头优势被减弱&#xff0c;具备创新技术的国产基础软件企业&#xff0c;有希望实现弯道超车。 随着数字化转型进程的加快&#xff0c;企业对于数据基础设施的存储和计算能力要求越来越高。如何进行数据资产的统一管理和…

Postman下载教程

目录 下载 安装 注意事项 看到很多小伙伴在问 Postman 下载的相关问题&#xff0c;花时间整理了下&#xff0c;下面教新入门的小伙伴如何去下载 Postman。 开始前我们可以先了解下&#xff1a;Postman 简介 下载 第一步&#xff1a;进入 Postman 官网 首先&#xff0c;我…

【前端|Javascript第4篇】详解Javascript的事件模型:小白也能轻松搞懂!

前言 在当今数字时代&#xff0c;前端技术正日益成为塑造用户体验的关键。而其中一个不可或缺的核心概念就是JavaScript的事件模型。或许你是刚踏入前端领域的小白&#xff0c;或者是希望深入了解事件模型的开发者&#xff0c;不论你的经验如何&#xff0c;本篇博客都将带你揭开…

Multi-object navigation in real environments using hybrid policies 论文阅读

论文信息 题目&#xff1a;Multi-object navigation in real environments using hybrid policies 作者&#xff1a;Assem Sadek, Guillaume Bono 来源&#xff1a;CVPR 时间&#xff1a;2023 Abstract 机器人技术中的导航问题通常是通过 SLAM 和规划的结合来解决的。 最近…

IDEA常用设置与maven项目部署

目录 前言 一、Idea是什么 二、Idea的优点 三、Idea的常用设置 主题设置 设置鼠标悬浮提示 忽略大小写提示 自动导包 取消单行显示Tabs 设置字体 配置类文档注释信息模版 设置文件编码 设置自动编译 水平或者垂直显示代码 快捷方式改成eclipse 设置默认浏览器…

LeetCode150道面试经典题-- 有效的字母异位词(简单)

1.题目 给定两个字符串 s 和 t &#xff0c;编写一个函数来判断 t 是否是 s 的字母异位词。 注意&#xff1a;若 s 和 t 中每个字符出现的次数都相同&#xff0c;则称 s 和 t 互为字母异位词。 2.示例 s"adasd" t"daads" 返回true s"addad" t &q…

Oracle 增加重做日志组、组成员

重做日志文件记录数据所有的修改信息并提供一种数据库失败时的恢复机制 一个Oracle数据库要求至少有两组重做日志文件 组中每个日志文件被称作一个组成员 需求&#xff1a;目前有三组重做日志组&#xff0c;增加一个重做日志组、并且增加两个重做日志组成员 1、查看重做日志组…

学习笔记整理-JS-04-流程控制语句

文章目录 一、条件语句1. if语句的基本使用2. if else if多条件分支3. if语句算法题4. switch语句5. 三元运算符 二、循环语句1. for循环语句2. for循环算法题3. while循环语句4. break和continue5. do while语句 三、初识算法1. 什么是算法2. 累加器和累乘器3. 穷举法4. 综合算…

Python爬虫的requests(学习于b站尚硅谷)

目录 一、requests  1. requests的基本使用  &#xff08;1&#xff09;文档  &#xff08;2&#xff09;安装  &#xff08;3&#xff09;响应response的属性以及类型  &#xff08;4&#xff09;代码演示 2.requests之get请求  3. requests之post请求  &#x…

面试八股文Mysql:(1)事务实现的原理

1. 什么是事务 事务就是一组数据库操作&#xff0c;这些操作是一个atomic&#xff08;原子性的操作&#xff09; &#xff0c;不可分割&#xff0c;要么都执行&#xff0c;要么回滚&#xff08;rollback&#xff09;都不执行。这样就避免了某个操作成功某个操作失败&#xff0…

centos7 nginx1.18.0离线升级至1.25.1

centos7 nginx1.18.0离线升级至1.25.1 项目背景 系统&#xff1a;centos 7 nginx版本&#xff1a; 1.18.0 最近护网行动查出来 有关Nginx的几个安全漏洞&#xff0c;解决方案只需要更新Nginx版本到最新即可。 Nginx升级过程 1. 下载新版本nginx 下载地址&#xff1a;https:…

学习笔记整理-JS-06-函数

一、函数基本使用 1. 什么是函数 函数就是语句的封装&#xff0c;可以让这些代码方便地被复用。函数具有"一次定义&#xff0c;多次调用"的优点。使用函数&#xff0c;可以简化代码&#xff0c;让代码更具有可读性。 2. 函数的定义和调用 和变量类似&#xff0c;函…

选择最适合自己的笔记本

选择最适合自己的笔记本电脑 一、了解笔记本品牌一线品牌准一线品牌二线品牌三线品牌 二、笔记本入手渠道笔记本入手渠道 三、根据需求选择机型使用需求1.日常使用2.商务办公、财务3.轻度剪辑、ps4.代码5.创意设计6.游戏 四、笔记本电脑配置如何选1.cpu2.显卡&#xff08;GPU&a…

MSP432自主开发笔记6:定时器多通道捕获多条编码器线脉冲数

所用开发板&#xff1a;MSP432P401R 今日在此更新一下编码器测速的定时器捕获写法&#xff0c;之前学习时竟然忘记更新了~~ 本文讲如何用定时器的通道来 捕获编码器的脉冲信号数量&#xff0c;不提供速度路程的计算方式&#xff0c; 文章提供源码&#xff0c;测试工程下载&a…