第一步:准备数据
6种蝴蝶数据:self.class_indict = ["曙凤蝶", "麝凤蝶", "多姿麝凤蝶", "旖凤蝶", "红珠凤蝶", "热斑凤蝶"],总共有900张图片,每个文件夹单独放一种数据
第二步:搭建模型
本文选择一个Vision Transformer网络,其原理介绍如下:
Vision Transformer(ViT)是一种基于Transformer架构的深度学习模型,用于图像识别和计算机视觉任务。与传统的卷积神经网络(CNN)不同,ViT直接将图像视为一个序列化的输入,并利用自注意力机制来处理图像中的像素关系。
ViT通过将图像分成一系列的图块(patches),并将每个图块转换为向量表示作为输入序列。然后,这些向量将通过多层的Transformer编码器进行处理,其中包含了自注意力机制和前馈神经网络层。这样可以捕捉到图像中不同位置的上下文依赖关系。最后,通过对Transformer编码器输出进行分类或回归,可以完成特定的视觉任务。
Vit model结构图
Vit的模型结构如下图所示。vit是将图像块应用于transformer。CNN是以滑窗的思想用卷积核在图像上进行卷积得到特征图。为了可以使图像仿照NLP的输入序列,我们可以先将图像分成块(patch),再将这些图像块进行平铺后输入到网络中(这样就变成了图像序列),然后通过transformer进行特征提取,最后再通过MLP对这些特征进行分类【其实就可以理解为在以往的CNN分类任务中,将backbone替换为transformer】。
第三步:训练代码
1)损失函数为:交叉熵损失函数
2)训练代码:
import os
import math
import argparse
import torch
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms
from my_dataset import MyDataSet
from vit_model import vit_base_patch16_224_in21k as create_model
from utils import read_split_data, train_one_epoch, evaluate
def main(args):
device = torch.device(args.device if torch.cuda.is_available() else "cpu")
if os.path.exists("./weights") is False:
os.makedirs("./weights")
tb_writer = SummaryWriter()
train_images_path, train_images_label, val_images_path, val_images_label = read_split_data(args.data_path)
data_transform = {
"train": transforms.Compose([transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
"val": transforms.Compose([transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])}
# 实例化训练数据集
train_dataset = MyDataSet(images_path=train_images_path,
images_class=train_images_label,
transform=data_transform["train"])
# 实例化验证数据集
val_dataset = MyDataSet(images_path=val_images_path,
images_class=val_images_label,
transform=data_transform["val"])
batch_size = args.batch_size
nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8]) # number of workers
print('Using {} dataloader workers every process'.format(nw))
train_loader = torch.utils.data.DataLoader(train_dataset,
batch_size=batch_size,
shuffle=True,
pin_memory=True,
num_workers=nw,
collate_fn=train_dataset.collate_fn)
val_loader = torch.utils.data.DataLoader(val_dataset,
batch_size=batch_size,
shuffle=False,
pin_memory=True,
num_workers=nw,
collate_fn=val_dataset.collate_fn)
model = create_model(num_classes=args.num_classes, has_logits=False).to(device)
if args.weights != "":
assert os.path.exists(args.weights), "weights file: '{}' not exist.".format(args.weights)
weights_dict = torch.load(args.weights, map_location=device)
# 删除不需要的权重
del_keys = ['head.weight', 'head.bias'] if model.has_logits \
else ['pre_logits.fc.weight', 'pre_logits.fc.bias', 'head.weight', 'head.bias']
for k in del_keys:
del weights_dict[k]
print(model.load_state_dict(weights_dict, strict=False))
if args.freeze_layers:
for name, para in model.named_parameters():
# 除head, pre_logits外,其他权重全部冻结
if "head" not in name and "pre_logits" not in name:
para.requires_grad_(False)
else:
print("training {}".format(name))
pg = [p for p in model.parameters() if p.requires_grad]
optimizer = optim.SGD(pg, lr=args.lr, momentum=0.9, weight_decay=5E-5)
# Scheduler https://arxiv.org/pdf/1812.01187.pdf
lf = lambda x: ((1 + math.cos(x * math.pi / args.epochs)) / 2) * (1 - args.lrf) + args.lrf # cosine
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
for epoch in range(args.epochs):
# train
train_loss, train_acc = train_one_epoch(model=model,
optimizer=optimizer,
data_loader=train_loader,
device=device,
epoch=epoch)
scheduler.step()
# validate
val_loss, val_acc = evaluate(model=model,
data_loader=val_loader,
device=device,
epoch=epoch)
tags = ["train_loss", "train_acc", "val_loss", "val_acc", "learning_rate"]
tb_writer.add_scalar(tags[0], train_loss, epoch)
tb_writer.add_scalar(tags[1], train_acc, epoch)
tb_writer.add_scalar(tags[2], val_loss, epoch)
tb_writer.add_scalar(tags[3], val_acc, epoch)
tb_writer.add_scalar(tags[4], optimizer.param_groups[0]["lr"], epoch)
torch.save(model.state_dict(), "./weights/model-{}.pth".format(epoch))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--num_classes', type=int, default=6)
parser.add_argument('--epochs', type=int, default=100)
parser.add_argument('--batch-size', type=int, default=4)
parser.add_argument('--lr', type=float, default=0.001)
parser.add_argument('--lrf', type=float, default=0.01)
# 数据集所在根目录
# https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz
parser.add_argument('--data-path', type=str,
default=r"G:\demo\data\Butterfly20")
parser.add_argument('--model-name', default='', help='create model name')
# 预训练权重路径,如果不想载入就设置为空字符
parser.add_argument('--weights', type=str, default='./vit_base_patch16_224_in21k.pth',
help='initial weights path')
# 是否冻结权重
parser.add_argument('--freeze-layers', type=bool, default=True)
parser.add_argument('--device', default='cuda:0', help='device id (i.e. 0 or 0,1 or cpu)')
opt = parser.parse_args()
main(opt)
第四步:统计正确率
第五步:搭建GUI界面
第六步:整个工程的内容
有训练代码和训练好的模型以及训练过程,提供数据,提供GUI界面代码
代码的下载路径(新窗口打开链接):基于Pytorch框架的深度学习Vision Transformer神经网络蝴蝶分类识别系统源码
有问题可以私信或者留言,有问必答