Python实现SSA智能麻雀搜索算法优化循环神经网络分类模型(LSTM分类算法)项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。




1.项目背景

麻雀搜索算法(Sparrow Search Algorithm, SSA)是一种新型的群智能优化算法,在2020年提出,主要是受麻雀的觅食行为和反捕食行为的启发。

在麻雀觅食的过程中,分为发现者(探索者)和加入者(追随者),发现者在种群中负责寻找食物并为整个麻雀种群提供觅食区域和方向,而加入者则是利用发现者来获取食物。为了获得食物,麻雀通常可以采用发现者和加入者这两种行为策略进行觅食。种群中的个体会监视群体中其它个体的行为,并且该种群中的攻击者会与高摄取量的同伴争夺食物资源,以提高自己的捕食率。此外,当麻雀种群意识到危险时会做出反捕食行为。

本项目通过SSA智能麻雀搜索算法优化循环神经网络分类模型。

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

数据详情如下(部分展示):

 

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

关键代码:

 

3.2 数据缺失查看

使用Pandas工具的info()方法查看数据信息:

 

从上图可以看到,总共有11个变量,数据中无缺失值,共2000条数据。

关键代码: 

 

3.3 数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

 

关键代码如下:

 

4.探索性数据分析

4.1 y变量柱状图

用Matplotlib工具的plot()方法绘制柱状图:

 

4.2 y=1样本x1变量分布直方图

用Matplotlib工具的hist()方法绘制直方图:

 

4.3 相关性分析 

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。

5.特征工程

5.1 建立特征数据和标签数据

关键代码如下:

 

5.2 数据集拆分

通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:

5.3 数据样本增维

数据样本增加维度后的数据形状:

6.构建SSA智能麻雀搜索算法优化LSTM分类模型

主要使用SSA智能麻雀搜索算法优化LSTM分类算法,用于目标分类。

6.1 SSA智能麻雀搜索算法寻找最优的参数值   

最优参数:

 6.2 最优参数值构建模型

6.3 最优参数模型摘要信息 

 

6.4 最优参数模型网络结构 

 

6.5 最优参数模型训练集测试集损失和准确率曲线图

 

7.模型评估

7.1 评估指标及结果

评估指标主要包括准确率、查准率、查全率、F1分值等等。

从上表可以看出,F1分值为0.93,说明模型效果较好。

关键代码如下:

 7.2 分类报告

 

从上图可以看出,分类为0的F1分值为0.93;分类为1的F1分值为0.93。

7.3 混淆矩阵

 

从上图可以看出,实际为0预测不为0的 有14个样本;实际为1预测不为1的 有14个样本,整体预测准确率良好。

8.结论与展望

综上所述,本文采用了SSA智能麻雀搜索算法寻找循环神经网络LSTM算法的最优参数值来构建分类模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。

def Bounds(s, Lb, Ub):
    temp = s
    for i in range(len(s)):
        if temp[i] < Lb[0, i]:  # 小于最小值
            temp[i] = Lb[0, i]  # 取最小值
        elif temp[i] > Ub[0, i]:  # 大于最大值
            temp[i] = Ub[0, i]  # 取最大值
 
 
# ******************************************************************************
 
# 本次机器学习项目实战所需的资料,项目资源如下:
 
# 项目说明:
 
# 链接:https://pan.baidu.com/s/1c6mQ_1YaDINFEttQymp2UQ
 
# 提取码:thgk
 
# ******************************************************************************
 
 
# y=1样本x1变量分布直方图
fig = plt.figure(figsize=(8, 5))  # 设置画布大小
plt.rcParams['font.sans-serif'] = 'SimHei'  # 设置中文显示
plt.rcParams['axes.unicode_minus'] = False  # 解决保存图像是负号'-'显示为方块的问题
data_tmp = data.loc[data['y'] == 1, 'x1']  # 过滤出y=1的样本
# 绘制直方图  bins:控制直方图中的区间个数 auto为自动填充个数  color:指定柱子的填充色
plt.hist(data_tmp, bins='auto', color='g')

更多项目实战,详见机器学习项目实战合集列表:

机器学习项目实战合集列表_机器学习实战项目_胖哥真不错的博客-CSDN博客


项目代码咨询、获取,请见下方公众号。 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/72998.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【力扣每日一题】617. 合并二叉树 dfs bfs 8.14打卡

文章目录 题目思路代码 题目 617. 合并二叉树 难度&#xff1a; 简单 描述&#xff1a; 给你两棵二叉树&#xff1a; root1 和 root2 。 想象一下&#xff0c;当你将其中一棵覆盖到另一棵之上时&#xff0c;两棵树上的一些节点将会重叠&#xff08;而另一些不会&#xff0…

SQL | 使用通配符进行过滤

6-使用通配符进行过滤 6.1-LIKE操作符 前面介绍的所有操作符都是通过已知的值进行过滤&#xff0c;或者检查某个范围的值。但是如果我们想要查找产品名字中含有bag的数据&#xff0c;就不能使用前面那种过滤情况。 利用通配符&#xff0c;可以创建比较特定数据的搜索模式。 …

《论文阅读12》RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds

一、论文 研究领域&#xff1a;全监督3D语义分割&#xff08;室内&#xff0c;室外RGB&#xff0c;kitti&#xff09;论文&#xff1a;RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds CVPR 2020 牛津大学、中山大学、国防科技大学 论文链接论文gi…

GIT结合Maven对源码以及jar包的管理建设

一、GIT管理规范 1.1 git分支概念 develop分支 开发分支,不管是要做新的feature还是需要做bug修复,都是从这个分支分出来做。 在这个分支下主要负责记录开发状态下相对稳定的版本,即完成了某个feature或者修复了某个bug后的开发稳定版本。 feature-*-*分支 feature-姓名…

Pytorch基于VGG cosine similarity实现简单的以图搜图(图像检索)

代码如下&#xff1a; from PIL import Image from torchvision import transforms import os import torch import torchvision import torch.nn.functional as Fclass VGGSim(torch.nn.Module):def __init__(self):super(VGGSim, self).__init__()blocks []blocks.append(t…

学术论文GPT源码解读:从chatpaper、chatwithpaper到gpt_academic

前言 之前7月中旬&#xff0c;我曾在微博上说准备做“20个LLM大型项目的源码解读” 针对这个事&#xff0c;目前的最新情况是 已经做了的&#xff1a;LLaMA、Alpaca、ChatGLM-6B、deepspeedchat、transformer、langchain、langchain-chatglm知识库准备做的&#xff1a;chatpa…

时序预测 | MATLAB实现EEMD-LSTM、LSTM集合经验模态分解结合长短期记忆神经网络时间序列预测对比

时序预测 | MATLAB实现EEMD-LSTM、LSTM集合经验模态分解结合长短期记忆神经网络时间序列预测对比 目录 时序预测 | MATLAB实现EEMD-LSTM、LSTM集合经验模态分解结合长短期记忆神经网络时间序列预测对比效果一览基本介绍模型搭建程序设计参考资料 效果一览 基本介绍 时序预测 | …

爬虫与搜索引擎优化:通过Python爬虫提升网站搜索排名

作为一名专业的爬虫程序员&#xff0c;我深知网站的搜索排名对于业务的重要性。在如今竞争激烈的网络世界中&#xff0c;如何让自己的网站在搜索引擎结果中脱颖而出&#xff0c;成为关键。今天&#xff0c;和大家分享一些关于如何通过Python爬虫来提升网站的搜索排名的技巧和实…

动态优先权算法

1.设计目的与要求 1.1设计目的 通过动态优先权算法的模拟加深对进程概念和进程调度过程的理解。 1.2设计要求 本实验要求学生独立地用C或C语言编写一个简单的进程管理程序&#xff0c;其主要部分是进程调度。调度算法可由学生自行选择&#xff0c;如基于动态优先级的调度算法…

maven Jar包反向install到本地仓库

maven Jar包反向install到本地仓库 需求实现 需求 项目打包时报错&#xff0c;缺少一个jar包。 但是在maven仓库都找不到此jar包&#xff0c;其他人提供了这个jar包。 需要把这个jar包install到本地仓库&#xff0c;使项目能正常打包运行。 实现 使用git bash命令执行以下脚…

iTOP-STM32MP157开发板Linux Misc驱动编写实验程序(运行测试)

启动 STM32MP157 开发板&#xff0c;我们通过 nfs 挂载共享文件目录&#xff0c;我们进入到共享目录&#xff0c;加载驱动模块如 图所示&#xff1a; insmod misc.ko 驱动加载成功后&#xff0c;输入以下命令&#xff0c;查看注册的设备节点是否存在&#xff0c;如下图所示&a…

【C++类和对象】类有哪些默认成员函数呢?(上)

目录 1. 类的6个默认成员函数 2. 构造函数(*^▽^*) 2.1 概念 2.2 特性 3. 析构函数(*^▽^*) 3.1 概念 3.2 特性 4. 拷贝构造函数(*^▽^*) 4.1 概念 4.2 特性 5. 赋值运算符重载(*^▽^*) 5.1 运算符重载 5.2 赋值运算符重载 ヾ(๑╹◡╹)&#xff89;"人总要为…

django使用多个数据库实现

一、说明&#xff1a; 在开发 Django 项目的时候&#xff0c;很多时候都是使用一个数据库&#xff0c;即 settings 中只有 default 数据库&#xff0c;但是有一些项目确实也需要使用多个数据库&#xff0c;这样的项目&#xff0c;在数据库配置和使用的时候&#xff0c;就比较麻…

体渲染原理及WebGL实现【Volume Rendering】

体渲染&#xff08;Volume Rendering&#xff09;是NeRF神经场辐射AI模型的基础&#xff0c;与传统渲染使用三角形来显示 3D 图形不同&#xff0c;体渲染使用其他方法&#xff0c;例如体积光线投射 (Volume Ray Casting)。本文介绍体渲染的原理并提供Three.js实现代码&#xff…

中睿天下Coremail | 2023年第二季度企业邮箱安全态势观察

今日&#xff0c;中睿天下联合Coremail邮件安全发布《2023第二季度企业邮箱安全性研究报告》&#xff0c;对2023第二季度和2023上半年的企业邮箱的安全风险进行了分析。 一 垃圾邮件同比下降16.38% 根据监测&#xff0c;2023年Q2垃圾邮件数量达到6.47亿封&#xff0c;环比下降…

HTML5 游戏开发实战 | 五子棋

01、五子棋游戏设计的思路 在下棋过程中&#xff0c;为了保存下过的棋子的信息&#xff0c;使用数组 chessData。chessData&#xff3b;x&#xff3d;&#xff3b;y&#xff3d;存储棋盘(x&#xff0c;y)处棋子信息&#xff0c;1 代表黑子&#xff0c;2 代表白子&#xff0c;0…

C# PDF加盖电子章

winform界面 1.选择加签pdf按钮代码实现 private void button1_Click(object sender, EventArgs e){OpenFileDialog op new OpenFileDialog();op.Filter "PDF文件(*.pdf)|*.pdf";bool flag op.ShowDialog() DialogResult.OK;if (flag){string pdfPath Path.Get…

R语言 列表中嵌套列名一致的多个数据框如何整合为一个数据框

在批量建模后容易得到list&#xff0c;list中的每个元素都是单个的tibble 或者 dataframe&#xff0c;如何将这些数据整合为一张表呢&#xff1f; 载入R包 library(broom) library(tidyverse) 模拟数据 models <- txhousing %>% group_by(city) %>% do(modlm(lo…

将.doc文档的默认打开方式从WPS修改为word office打开方式的具体方法(以win 10 操作系统为例)

将.doc文档的默认打开方式从WPS修改为word office打开方式的具体方法&#xff08;以win 10 操作系统为例&#xff09; 随着近几年WPS软件的不断完善和丰富&#xff0c;在某些方面取得了具有特色的优势。在平时编辑.doc文档时候也常常用到wps软件&#xff0c;不过WPS文献也存在…

Android Jetpack Compose 中的分页与缓存展示

Android Jetpack Compose 中的分页与缓存展示 在几乎任何类型的移动项目中&#xff0c;移动开发人员在某个时候都会处理分页数据。如果数据列表太大&#xff0c;无法一次从服务器检索完毕&#xff0c;这就是必需的。因此&#xff0c;我们的后端同事为我们提供了一个端点&#…